数据挖掘丨轻松应用RapidMiner机器学习内置数据分析案例模板详解(上篇)

RapidMiner 案例模板

RapidMiner 机器学习平台提供了一个可视化的操作界面,允许用户通过拖放的方式构建数据分析流程。

RapidMiner目前内置了 13 种案例模板,这些模板是预定义的数据分析流程,可以帮助用户快速启动和执行常见的数据分析任务。在本期文章中,我们选取了其中6种内置模板的详细步骤,为大家进行逐一介绍,案例模板包含:客户流失分析、精准营销、信用风险、购物篮分析、预测性维护、价格风险聚类。

图片

案例模板界面

*如内置模板不能满足用户的场景,用户也可以使用模型流程设计器构建自己的模型流程。

1、客户流失分析

流失模型是电信行业用于预测客户流失的重要分析工具,通过分析客户行为和历史数据,帮助企业识别流失风险,制定策略以减少客户流失率,保持业务稳定增长。

图片

步骤 1:

加载一个客户数据集,该数据集包含如下客户属性:

  • 年龄

  • 使用的技术(4G、光纤等)

  • 成为客户的时间

  • 去年的平均账单金额

  • 支持电话的数量

  • 去年是否放弃服务?

步骤 2:

编辑、转换和学习(ETL)以及准备数据:标记目标标签列(即流失指标),并将数值型流失列转换为二进制。

步骤 3:

模型验证至关重要!交叉验证将数据集分割为训练集,然后是独立的测试集。这种分割多次进行,以获得更好的性能估计。

2、精准营销

营销策略通过分析历史数据,建立客户响应模型,预测潜在反应者,旨在提升新营销活动的转化率。

图片

步骤 1:

加载并准备过去市场营销活动的数据,包括接收者的属性(例如年龄、性别、地区)和行为属性(产品与服务的使用情况、网站等)。

步骤 2:

确定哪些因素影响对市场营销活动的反应,以提高预测的准确性。

步骤 3:

训练并验证客户反应模型。

步骤 4:

加载包含新营销活动潜在接收者的数据。应用客户反应模型来识别并触达那些最有可能以期望方式响应营销活动的接收者。

步骤 5:

通常,忽略会响应的接收者比向不响应的人发送活动的成本更高。考虑这些成本,计算并应用最优的置信度阈值。

3、信用风险

信用风险建模利用支持向量机(SVM)模型,通过训练模型并调整参数C和gamma来预测信用违约风险,进而对新数据进行风险评分。

步骤 1:

加载对手方风险数据,其中包含公司属性和过去的违约观察记录。对于那些缺少违约观察记录的公司,应该预测其违约风险。

步骤 2:

编辑、转换和加载(ETL)- 将数据分为两组:一组包含标签值的行,另一组标签值缺失的行。包含标签的行用于训练一个模型,该模型应预测没有标签的行的违约风险。

步骤 3:

训练并优化支持向量机(SVM)模型以预测信用风险。这个优化操作器会变化SVM的重要参数C和gamma,以返回具有最大预测准确性的模型。

4、购物篮分析

购物篮分析通过分析商品组合购买模式,构建关联规则,以生成产品推荐,帮助商家优化库存和促销策略。

图片

步骤 1:

加载交易数据,其中包含交易ID、产品ID和一个数量指标。这些数据表示作为交易一部分的特定产品被购买了多少次。

步骤 2:

编辑、转换和加载(ETL)- 通过连接聚合交易数据,以便交易中的产品在一个条目中。

步骤 3:

使用FP-Growth算法确定频繁项集。频繁项集指的是集合中的物品(产品)经常一起被购买,即在一定比例的交易中出现。这个比例由项集的支持度(support)给出。

步骤 4:

创建关联规则,这些规则可以根据规则的置信度用于产品推荐。

5、预测性维护

预测性维护根据过去机器运行和故障的观察数据来建模设备故障。将模型应用于当前情况,以预测机器故障并预先安排维护。

图片

步骤1:

加载过去机器运行的数据,这些数据被标记了是否有故障发生的信息。

步骤2:

使用各种属性加权算法确定影响因素,并将它们的权重结果进行平均。

步骤3:

训练一个k-最近邻(k-NN)模型——优化k值(考虑用于预测的参考情况数量),以实现最大的故障预测准确性。

步骤4:

加载新数据,并将机器故障模型应用于当前机器运行,以预测潜在的机器故障。

6、价格风险聚类分析

价格风险聚类模型通过标准化处理时间序列数据,并应用X-Means算法进行聚类分析,以识别和理解股票价格之间的风险关联。

图片

步骤1:

加载德国DAX 30股票的价格数据。将日期列设置为角色ID。

步骤2:

对每个价格时间序列进行标准化,即对值进行Z变换,使得变换后的平均值为0,标准差为1。

步骤3:

转置数据集(使每个时间序列现在成为一行),并对数据进行聚类,使得每个序列归入一个聚类中。


若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速制造进程,

共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”。

点击立即免费报名

(注:现在注册参会,即可于会后第一时间获得Altair全球100个客户案例资料)


关于 Altair RapidMiner

Altair RapidMiner 数据分析与人工智能平台,是 Altair 澳汰尔公司旗下仿真、HPC 和数据分析三块主营业务中的解决方案,它在数据分析领域最早实现将自动化数据科学、文本分析、自动特征工程和深度学习等多种功能同时集成的一站式数据分析平台,帮助用户解决从数据清洗、准备、数据科学建模到模型管理和部署,同时又支持数据和流数据的实时分析可视化的数据分析平台。

欲了解更多信息,欢迎访问:www.altair.com.cn​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux:centos7升级libstdc++版本到3.4.26

下载,解压 wget http://www.vuln.cn/wp-content/uploads/2019/08/libstdc.so_.6.0.26.zip unzip libstdc.so_.6.0.26.zip 复制到【/usr/lib64】: cp libstdc.so.6.0.26 /usr/lib64创建软链接 cd /usr/lib64 sln libstdc.so.6.0.26 libstdc.so.6查看一…

876. 链表的中间结点-链表

876. 链表的中间结点 - 力扣(LeetCode) 快慢指针 class Solution { public:ListNode* middleNode(ListNode* head) {ListNode* slow head;ListNode* fast head;while(fast ! nullptr && fast->next ! nullptr){slow slow->next;fast …

备战 清华大学 上机编程考试-冲刺前50%,倒数第5天

T1:多项式求和 小K最近刚刚习得了一种非常酷炫的多项式求和技巧,可以对某几类特殊的多项式进行运算。非常不幸的是,小K发现老师在布置作业时抄错了数据,导致一道题并不能用刚学的方法来解,于是希望你能帮忙写一个程序…

数据结构(常见的排序算法)

1.插入排序 1.1直接插入排序 在[0 end]区间上有序,然后将(end1)的数据与前面有序的数据进行比较,将(end1)的数据插入,这样[0 end1]区间上就是有序的,然后再向后进行比较。 例如&a…

验证码识别接口、多种样式验证码识别接口、中英文验证码识别接口

验证码识别接口、多种样式验证码识别接口、中英文验证码识别接口 本文提供一个基于OCR和机器学习的验证码识别接口,能够识别较复杂的中文、英文验证码,在OCR的基础上针对验证码进行算法优化。本接口是收费的(最低0.5分1次调用,试…

单片机(STM32)与上位机传输浮点数

目录 单片机(STM32)与上位机传输数据的方法1. 传输整形数据2. 传输浮点数据3. 如何打包与解包 单片机(STM32)与上位机传输数据的方法 在进行单片机程序的开发时,常常需要与其他设备进行通信。一种情况是与其他电路板通信,比如STM32主机与STM32从机通信&…

CentOS7 MySQL5.7.35主从 不停机搭建 以及配置

如需安装MySQL,参照MySQL 5.7.35 安装教程 https://blog.csdn.net/CsethCRM/article/details/119418841一、主&从 环境信息准备 1.1.查看硬盘信息,确保磁盘够用(主&从) df -h1.2.查看内存信息 (主&从&am…

基尼系数计算过程

引言 在探讨经济公平性时,基尼系数是一个不可忽视的指标。它不仅反映了一个国家或地区内部的收入分配状况,还对政策制定和社会稳定有着深远的影响。 基尼系数的定义 基尼系数是由意大利统计学家科拉多基尼在1912年提出的,用来衡量一个国家…

【T3】畅捷通T3软件查询明细账等账簿,出现某些列串位置。

【问题描述】 查询畅捷通T3软件科目明细账的时候, 出现某些行的数据串位置, 摘要、金额、方向都没有在对应的列。 【解决方案】 根据跟踪发现,最终在客户档案上发现问题。 数据串位中对应的客户名称、简称中的对后面多了一个【tab】键的空格…

Nodejs 第七十七章(MQ高级)

MQ介绍和基本使用在75章介绍过了,不再重复 MQ高级用法-延时消息 什么是延时消息? Producer 将消息发送到 MQ 服务端,但并不期望这条消息立马投递,而是延迟一定时间后才投递到 Consumer 进行消费,该消息即延时消息 插件安装 R…

【深度学习】NLP,Transformer讲解,代码实战

文章目录 1. 前言2. Transformer结构训练过程1. 输入嵌入和位置编码2. 编码器层2.1 单头的注意力机制(便于理解)2.2 多头的注意力机制(Transformer真实使用的)2.3 残差连接和层归一化2.4 前馈神经网络(FFN)2.5 残差连接和层归一化2.6 总结 3. 解码器层 推…

Jenkins构建 Maven项目(微服务)并自动发布

前面讲了docker 安装Jenkins和gitlab代码管理工具,接下来我们讲一下Jenkins怎么构建 Maven项目。 1. 首先Jenkins配置下面3中工具类 首先是在本地安装三个jenkins自动配置相关的工具 1.1 JDK 由于我们使用docker来启动jenkins,其自带有jdk,…

摩托罗拉手机在中国以外的市场复兴,在欧洲和美国大幅增长

摩托罗拉曾是全球手机行业的领导者,不过自从被诺基亚击败后,它就辗转被卖了又卖,曾经辉煌的品牌堕落了,让人颇为可惜,不过如今摩托罗拉手机似乎看到了复兴的希望,在中国以外的市场都取得了快速增长。 市调机…

BC11 学生基本信息输入输出

BC11 学生基本信息输入输出 废话不多说上题目&#xff1a; 这道题表面上很简单&#xff0c;但是里面有很重要的点先给大家上正确的代码&#xff1a; #include<stdio.h> int main() {int stu 0;float c 0;float English 0;float math 0;scanf("%d;%f,%f,%f"…

Unity API学习之消息机制理论与应用

目录 消息机制 示例1&#xff1a;同一物体中不同组件之间发送消息 示例2&#xff1a;父与子对象之间的消息发送(BroadcastMassage) 父对象向子对象发送消息 ​编辑 子对象向父对象发送消息 消息机制 在Unity中&#xff0c;SendMessage 方法用于在游戏对象及其所有子对象上…

Zabbix6.0自动发现Linux服务器并添加主机

文章目录 一、整体流程二、操作过程 一、整体流程 Zabbix自动发现主机功能是Zabbix监控系统的一个重要功能&#xff0c;它能够自动发现并添加新的主机到监控系统中&#xff0c;从而减少人为繁琐的操作&#xff01; 步骤操作1️⃣ 第一步创建自动发现规则2️⃣ ​第二步创建自…

汇编语言作业(五)

目录 一、实验目的 二、实验内容 三、实验步骤以及结果 四、实验结果与分析 五、 实验总结 一、实验目的 1.熟悉掌握汇编语言的程序结构&#xff0c;能正确书写数据段、代码段等 2&#xff0c;利用debug功能&#xff0c;查看寄存器&#xff08;CS,IP,AX,DS..)及数据段的…

Python集合的基本概念和使用方法

目录 集合&#xff08;Set&#xff09; 基本概念 基本特性 基本操作 集合运算 成员测试 高级操作 集合推导式 总结 集合&#xff08;Set&#xff09; Python集合&#xff08;Set&#xff09;是Python语言中一个非常实用且强大的数据结构&#xff0c;它用于存储多个不…

Python实现删除Word文档中带有“指定内容”的段落文本(7)

前言 本文是该专栏的第7篇,后面会持续分享Python办公自动化干货知识,记得关注。 在处理word文档内容的时候,有时候我们需要一个干净整洁的文本内容。比如说,如下图所示的情况: 在处理上述word文档内容的时候,我们希望将文本底部的“下载链接”以及“附件信息”两个段落,…

力扣199. 二叉树的右视图

给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4]示例 2: 输入: [1,null,3] 输出: [1,3]示例 3: 输入: [] 输出: [] /*** Def…