机器学习笔记之优化算法(十三)关于二次上界引理

机器学习笔记之优化算法——关于二次上界引理

  • 引言
    • 回顾:
      • 利普希兹连续
      • 梯度下降法介绍
    • 二次上界引理:介绍与作用
    • 二次上界与最优步长之间的关系
    • 二次上界引理证明过程

引言

本节将介绍二次上界的具体作用以及它的证明过程

回顾:

利普希兹连续

Wolfe \text{Wolfe} Wolfe准则收敛性证明一节中简单介绍了利普希兹连续 ( Lipschitz Continuity ) (\text{Lipschitz Continuity}) (Lipschitz Continuity)。其定义对应数学符号表达如下:
∀ x , x ^ ∈ R n , ∃ L : s . t . ∣ ∣ f ( x ) − f ( x ^ ) ∣ ∣ ≤ L ⋅ ∣ ∣ x − x ^ ∣ ∣ \forall x,\hat x \in \mathbb R^n , \exist \mathcal L: \quad s.t. ||f(x) - f(\hat x)|| \leq \mathcal L \cdot ||x - \hat x|| x,x^Rn,L:s.t.∣∣f(x)f(x^)∣∣L∣∣xx^∣∣
如果函数 f ( ⋅ ) f(\cdot) f()满足利普希兹连续,对上式进行简单变换可得到:
不等式左侧可使用拉格朗日中值定理进行进一步替换。
∃ ξ ∈ ( x , x ^ ) ⇒ ∣ ∣ f ( x ) − f ( x ^ ) ∣ ∣ ∣ ∣ x − x ^ ∣ ∣ = f ′ ( ξ ) ≤ L \exist \xi \in (x,\hat x) \Rightarrow \frac{||f(x) - f(\hat x)||}{||x - \hat x||} = f'(\xi)\leq \mathcal L ξ(x,x^)∣∣xx^∣∣∣∣f(x)f(x^)∣∣=f(ξ)L
这意味着:在函数 f ( ⋅ ) f(\cdot) f()在定义域内的绝大部分点处的变化率存在上界,受到 L \mathcal L L的限制。

梯度下降法介绍

在梯度下降法铺垫:总体介绍一节中对梯度下降法进行了简单认识。首先,梯度下降法是一个典型的线搜索方法 ( Line Search Method ) (\text{Line Search Method}) (Line Search Method)。其迭代过程对应数学符号表示如下:
x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk

  • 其中 P k ∈ R n \mathcal P_k \in \mathbb R^n PkRn,描述数值解的更新方向,在梯度下降法中,它选择目标函数 f ( ⋅ ) f(\cdot) f() x k x_k xk处梯度的反方向 − ∇ f ( x k ) - \nabla f(x_k) f(xk)作为更新方向,也称最速下降方向
    P k = − ∇ f ( x k ) \mathcal P_k = -\nabla f(x_k) Pk=f(xk)
  • α k \alpha_k αk表示步长。基于步长的选择方式分为精确搜索非精确搜索两类。关于非精确搜索——通过迭代获取数值解序列并以此近似最优步长的方法详见:

本节将介绍梯度下降法使用精确搜索求解最优步长,以及精确搜索的限制条件——二次上界引理

二次上界引理:介绍与作用

在求解梯度下降法的精确步长过程中,关于目标函数 f ( ⋅ ) f(\cdot) f(),在其定义域内可微的基础上增加一个条件:目标函数的梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足利普希兹连续
如果是梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足利普希兹连续,根据上面的格式,可以得到:
∇ 2 f ( ⋅ ) ≤ L \nabla^2 f(\cdot) \leq \mathcal L 2f()L
而二阶梯度描述的是梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化量。这意味着:关于 ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化情况不会过于剧烈。相反,如果 ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化情况过于剧烈:即便迭代过程中极小的一次更新,对应函数结果的变化也极大,例如: f ( x ) = 1 x \begin{aligned}f(x) = \frac{1}{x}\end{aligned} f(x)=x1 x ∈ ( 0 , 1 ] x \in (0,1] x(0,1]区间内 ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化情况。从而在迭代过程中,可能出现梯度爆炸的现象。

基于上述条件,可以得到结论:函数 f ( ⋅ ) f(\cdot) f()存在二次上界。其数学符号表示为:
∀ x , y ∈ R n ⇒ f ( y ) ≤ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) + L 2 ∣ ∣ y − x ∣ ∣ 2 \forall x,y \in \mathbb R^n \Rightarrow f(y) \leq f(x) + [\nabla f(x)]^T \cdot (y-x) + \frac{\mathcal L}{2}||y - x||^2 x,yRnf(y)f(x)+[f(x)]T(yx)+2L∣∣yx2
我们之前仅知道函数梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化率存在上界对其进行约束,但可通过该结论求出该上界的精确结果
首先通过图像观察该结论各部分的具体意义:
二次上界——示例
很明显,这仅是一个一维变量对应的函数结果 ( R ↦ R ) (\mathbb R \mapsto\mathbb R) (RR),其中蓝色虚线箭头表示 f ( y ) f(y) f(y)黑色虚线箭头表示 f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) f(x) + [\nabla f(x)]^T \cdot (y - x) f(x)+[f(x)]T(yx)。在上述结论中,两者之间的差距(绿色实线)不会无限大下去,而是存在一个上界约束这个差距
f ( y ) − [ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) ] ≤ L 2 ∣ ∣ y − x ∣ ∣ 2 f(y) - [f(x) + [\nabla f(x)]^T \cdot (y-x)] \leq \frac{\mathcal L}{2}||y -x||^2 f(y)[f(x)+[f(x)]T(yx)]2L∣∣yx2
假如这个差距结果远远大于 L 2 ∣ ∣ y − x ∣ ∣ 2 \begin{aligned}\frac{\mathcal L}{2}||y -x||^2\end{aligned} 2L∣∣yx2。例如:
超过二次上界——示例

从图像中可以明显看到,如果 f ( y ) f(y) f(y) f ( x ) + [ ∇ f ( x ) ] T ( y − x ) f(x) + [\nabla f(x)]^T (y - x) f(x)+[f(x)]T(yx)之间的差距过大的话,那么必然是 f ( y ) f(y) f(y)处的斜率与 f ( x ) f(x) f(x)处的斜率差距过大产生的结果。因此这个差距上界 L 2 ∣ ∣ y − x ∣ ∣ 2 \begin{aligned}\frac{\mathcal L}{2}||y - x||^2\end{aligned} 2L∣∣yx2本质上依然是约束 ∇ f ( ⋅ ) \nabla f(\cdot) f()变化率的大小。
这种情况出现梯度爆炸的可能性更高。

二次上界与最优步长之间的关系

假定二次上界引理是已知的,我们观察:二次上界引理对精确步长的求解起到什么作用
∀ x , y ∈ R n ⇒ f ( y ) ≤ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) + L 2 ∣ ∣ y − x ∣ ∣ 2 \forall x,y \in \mathbb R^n \Rightarrow f(y) \leq f(x) + [\nabla f(x)]^T \cdot (y-x) + \frac{\mathcal L}{2}||y - x||^2 x,yRnf(y)f(x)+[f(x)]T(yx)+2L∣∣yx2
既然二次上界引理对于 ∀ x , y ∈ R n \forall x,y \in \mathbb R^n x,yRn均成立,我们可以将 x , y x,y x,y视作:某次迭代步骤 k k k x k , x k + 1 x_k,x_{k+1} xk,xk+1
后续依然使用 x , y x,y x,y进行表示。
{ x ⇒ x k y ⇒ x k + 1 y = x + α k ⋅ P k \begin{cases} x \Rightarrow x_k \\ y \Rightarrow x_{k+1} \\ y = x + \alpha_k \cdot \mathcal P_k \end{cases} xxkyxk+1y=x+αkPk
由于 x ⇒ x k x \Rightarrow x_k xxk是上一次迭代步骤产生的位置,是已知项。这意味着:上述不等式右侧相当于关于变量 y ⇒ x k + 1 y \Rightarrow x_{k+1} yxk+1的一个二次函数。记作 ϕ ( y ) \phi(y) ϕ(y)
{ ϕ ( y ) ≜ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) + L 2 ∣ ∣ y − x ∣ ∣ 2 f ( y ) ≤ ϕ ( y ) \begin{cases} \phi(y) \triangleq f(x) + [\nabla f(x)]^T \cdot (y - x) + \frac{\mathcal L}{2}||y - x||^2 \\ \quad \\ f(y) \leq \phi(y) \end{cases} ϕ(y)f(x)+[f(x)]T(yx)+2L∣∣yx2f(y)ϕ(y)
由于关于 y y y的二次项 L 2 > 0 \begin{aligned}\frac{\mathcal L}{2} > 0\end{aligned} 2L>0,说明函数 ϕ ( y ) \phi(y) ϕ(y)存在最小值。对该值进行求解:
函数图像开口向上~
y m i n = arg ⁡ min ⁡ y ∈ R n ϕ ( y ) y_{min} = \mathop{\arg\min}\limits_{y \in \mathbb R^n} \phi(y) ymin=yRnargminϕ(y)

  • 首先对 ϕ ( y ) \phi(y) ϕ(y)关于 y y y求解梯度
    x x x相关的项均视作常数。
    ∇ ϕ ( y ) = 0 + ∇ f ( x ) ⋅ 1 + L 2 ⋅ 2 ⋅ ( y − x ) = ∇ f ( x ) + L ⋅ ( y − x ) \begin{aligned} \nabla \phi(y) & = 0 + \nabla f(x) \cdot 1 + \frac{\mathcal L}{2} \cdot 2 \cdot (y-x) \\ & = \nabla f(x) + \mathcal L \cdot (y-x) \end{aligned} ϕ(y)=0+f(x)1+2L2(yx)=f(x)+L(yx)
  • ∇ ϕ ( y ) ≜ 0 \nabla \phi(y) \triangleq 0 ϕ(y)0,有:
    y m i n = − ∇ f ( x ) L + x y_{min} = -\frac{\nabla f(x)}{\mathcal L} + x ymin=Lf(x)+x
    对应 ϕ ( y ) \phi(y) ϕ(y)最小值 min ⁡ ϕ ( y ) \min \phi(y) minϕ(y)有:
    min ⁡ ϕ ( y ) = ϕ ( y m i n ) = f ( x ) + [ ∇ f ( x ) ] T ⋅ ( − ∇ f ( x ) L ) + L 2 ⋅ [ − ∇ f ( x ) ] T [ − ∇ f ( x ) ] L 2 = f ( x ) − ∣ ∣ ∇ f ( x ) ∣ ∣ 2 2 L \begin{aligned} \min \phi(y) & = \phi(y_{min}) \\ & = f(x) + [\nabla f(x)]^T \cdot \left(-\frac{\nabla f(x)}{\mathcal L}\right) + \frac{\mathcal L}{2} \cdot \frac{[- \nabla f(x)]^T [- \nabla f(x)]}{\mathcal L^2}\\ & = f(x) - \frac{||\nabla f(x)||^2}{2\mathcal L} \end{aligned} minϕ(y)=ϕ(ymin)=f(x)+[f(x)]T(Lf(x))+2LL2[f(x)]T[f(x)]=f(x)2L∣∣∇f(x)2

y = x + α k ⋅ P k y = x + \alpha_k \cdot \mathcal P_k y=x+αkPk代入,观察:

  • P k \mathcal P_k Pk描述更新方向的向量对应的是负梯度方向 − ∇ f ( x ) -\nabla f(x) f(x)
  • 同理, α k \alpha_k αk对应 1 L \begin{aligned}\frac{1}{\mathcal L}\end{aligned} L1
    { y = x + α k ⋅ P k y m i n = x + 1 L ⋅ [ − ∇ f ( x ) ] ⇒ { α k = 1 L P k = − ∇ f ( x ) \begin{cases} \begin{aligned} y & = x + \alpha_k \cdot \mathcal P_k \\ y_{min} & = x + \frac{1}{\mathcal L} \cdot [-\nabla f(x)] \end{aligned} \end{cases} \Rightarrow \begin{cases} \begin{aligned}\alpha_k & = \frac{1}{\mathcal L} \\ \mathcal P_k & = - \nabla f(x) \end{aligned} \end{cases} yymin=x+αkPk=x+L1[f(x)] αkPk=L1=f(x)

但需要注意的是: f ( y ) ≤ ϕ ( y ) f(y) \leq \phi(y) f(y)ϕ(y),而 y m i n y_{min} ymin仅仅是 ϕ ( y ) \phi(y) ϕ(y)中的最小值。也就是说: y m i n y_{min} ymin f ( y ) f(y) f(y)取值上界中的最小值。在这种条件下,我们认为 α k = 1 L \begin{aligned}\alpha_k = \frac{1}{\mathcal L}\end{aligned} αk=L1就是可控制的最优步长。

二次上界引理证明过程

条件:函数 f ( ⋅ ) f(\cdot) f()可微,并且 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足利普希兹连续
结论: f ( ⋅ ) f(\cdot) f()存在二次上界
∀ x , y ∈ R n ⇒ f ( y ) ≤ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) + L 2 ∣ ∣ y − x ∣ ∣ 2 \forall x,y \in \mathbb R^n \Rightarrow f(y) \leq f(x) + [\nabla f(x)]^T \cdot (y - x) + \frac{\mathcal L}{2}||y - x||^2 x,yRnf(y)f(x)+[f(x)]T(yx)+2L∣∣yx2

证明:
由于上述的 x , y ∈ R n x,y \in \mathbb R^n x,yRn定义域内任意取值,因而无法直接从条件中获取到 f ( x ) , f ( y ) f(x),f(y) f(x),f(y)之间的大小关系。这里不妨设: y > x y > x y>x,并引入辅助函数 G ( θ ) \mathcal G(\theta) G(θ)
x , y ∈ R n   ( y > x ) x,y \in \mathbb R^n \text{ } (y > x) x,yRn (y>x)确定的情况下,构建一个关于 θ \theta θ的函数,从而通过调节 θ \theta θ来获取 [ f ( x ) , f ( y ) ] [f(x),f(y)] [f(x),f(y)]之间的函数结果。
G ( θ ) = f [ θ ⋅ y + ( 1 − θ ) ⋅ x ] = f [ x + θ ( y − x ) ] θ ∈ [ 0 , 1 ] \begin{aligned} \mathcal G(\theta) & = f [\theta \cdot y + (1 - \theta) \cdot x] \\ & = f [x + \theta(y - x)] \quad \theta \in [0,1] \end{aligned} G(θ)=f[θy+(1θ)x]=f[x+θ(yx)]θ[0,1]
从而有: G ( 0 ) = f ( x ) ; G ( 1 ) = f ( y ) \mathcal G(0) = f(x);\mathcal G(1) = f(y) G(0)=f(x);G(1)=f(y)。将其与结论中的对应项进行替换
仅需证明‘替换’后的式子成立即可。
G ( 1 ) ≤ G ( 0 ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) + L 2 ∣ ∣ y − x ∣ ∣ 2 ⇒ G ( 1 ) − G ( 0 ) − [ ∇ f ( x ) ] T ⋅ ( y − x ) ≤ L 2 ∣ ∣ y − x ∣ ∣ 2 \begin{aligned} & \quad \quad \mathcal G(1) \leq \mathcal G(0) + [\nabla f(x)]^T \cdot (y - x) + \frac{\mathcal L}{2} ||y - x||^2 \\ & \Rightarrow \mathcal G(1) - \mathcal G(0) - [\nabla f(x)]^T \cdot (y - x) \leq \frac{\mathcal L}{2} ||y - x||^2 \end{aligned} G(1)G(0)+[f(x)]T(yx)+2L∣∣yx2G(1)G(0)[f(x)]T(yx)2L∣∣yx2
观察不等式左侧
使用牛顿-莱布尼兹公式,可以将 G ( 1 ) − G ( 0 ) \mathcal G(1) - \mathcal G(0) G(1)G(0)表示成如下形式:
G ( 1 ) − G ( 0 ) = G ( θ ) ∣ 0 1 = ∫ 0 1 G ′ ( θ ) d θ \mathcal G(1) - \mathcal G(0) = \mathcal G(\theta) |_{0}^1 = \int_{0}^1 \mathcal G'(\theta) d\theta G(1)G(0)=G(θ)01=01G(θ)dθ
关于项 [ ∇ f ( x ) ] T ⋅ ( y − x ) [\nabla f(x)]^T \cdot (y - x) [f(x)]T(yx),同样可以使用定积分的形式进行表示。其中 [ ∇ f ( x ) ] T ⋅ ( y − x ) [\nabla f(x)]^T \cdot (y - x) [f(x)]T(yx)中不含 θ \theta θ,被视作常数。
[ ∇ f ( x ) ] T ⋅ ( y − x ) = [ ∇ f ( x ) ] T ⋅ ( y − x ) ⋅ 1 = [ ∇ f ( x ) ] T ⋅ ( y − x ) ⋅ θ ∣ 0 1 = [ ∇ f ( x ) ] T ⋅ ( y − x ) ⋅ ∫ 0 1 1 d θ = ∫ 0 1 [ ∇ f ( x ) ] T ⋅ ( y − x ) d θ \begin{aligned} [\nabla f(x)]^T \cdot(y - x) & = [\nabla f(x)]^T \cdot (y - x) \cdot 1 \\ & = [\nabla f(x)]^T \cdot (y - x) \cdot \theta |_0^1 \\ & = [\nabla f(x)]^T \cdot (y - x) \cdot \int_0^1 1 d\theta \\ & = \int_{0}^1 [\nabla f(x)]^T \cdot (y - x) d\theta \end{aligned} [f(x)]T(yx)=[f(x)]T(yx)1=[f(x)]T(yx)θ01=[f(x)]T(yx)011dθ=01[f(x)]T(yx)dθ
至此,不等式左侧可表示为:
I l e f t = ∫ 0 1 G ′ ( θ ) d θ − ∫ 0 1 [ ∇ f ( x ) ] T ⋅ ( y − x ) d θ = ∫ 0 1 { [ ∇ f ( x + θ ⋅ ( y − x ) ) ] T ⋅ ( y − x ) − [ ∇ f ( x ) ] T ⋅ ( y − x ) } d θ \begin{aligned} \mathcal I_{left} & = \int_{0}^1 \mathcal G'(\theta) d\theta - \int_{0}^1 [\nabla f(x)]^T \cdot (y - x) d\theta \\ & = \int_0^1 \left \{[\nabla f(x + \theta \cdot (y - x))]^T\cdot (y - x) - [\nabla f(x)]^T \cdot (y - x) \right\} d\theta \end{aligned} Ileft=01G(θ)dθ01[f(x)]T(yx)dθ=01{[f(x+θ(yx))]T(yx)[f(x)]T(yx)}dθ
提出公共部分: y − x y - x yx,将剩余部分进行合并
I l e f t = ∫ 0 1 { ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) } T ⋅ ( y − x ) d θ \mathcal I_{left} = \int_{0}^1 \left\{\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)\right\}^T \cdot (y - x) d\theta Ileft=01{f[x+θ(yx)]f(x)}T(yx)dθ
观察积分号内的项,其本质上是向量 ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) \nabla f[x + \theta \cdot (y - x)] - \nabla f(x) f[x+θ(yx)]f(x)与向量 y − x y - x yx的内积结果。因而有:
不等式满足的原因: cos ⁡ θ ∈ [ − 1 , 1 ] \cos \theta \in [-1,1] cosθ[1,1]
{ ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) } T ⋅ ( y − x ) = ∣ ∣ ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) ∣ ∣ ⋅ ∣ ∣ y − x ∣ ∣ ⋅ cos ⁡ θ ≤ ∣ ∣ ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) ∣ ∣ ⋅ ∣ ∣ y − x ∣ ∣ \begin{aligned} \left\{\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)\right\}^T \cdot (y - x) & = ||\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)|| \cdot ||y - x|| \cdot \cos \theta \\ & \leq ||\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)|| \cdot ||y - x|| \end{aligned} {f[x+θ(yx)]f(x)}T(yx)=∣∣∇f[x+θ(yx)]f(x)∣∣∣∣yx∣∣cosθ∣∣∇f[x+θ(yx)]f(x)∣∣∣∣yx∣∣
将该不等式带回 I l e f t \mathcal I_{left} Ileft,有:
I l e f t ≤ ∫ 0 1 ∣ ∣ ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) ∣ ∣ ⋅ ∣ ∣ y − x ∣ ∣ d θ \mathcal I_{left} \leq \int_0^1 ||\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)|| \cdot ||y - x|| d\theta Ileft01∣∣∇f[x+θ(yx)]f(x)∣∣∣∣yx∣∣dθ
由于 f ( ⋅ ) f(\cdot) f()满足利普希兹连续,因而有:
其中 θ ∈ [ 0 , 1 ] \theta \in [0,1] θ[0,1],因而可以将其从范数符号中提出来。
∣ ∣ ∇ f [ x + θ ⋅ ( y − x ) ] − ∇ f ( x ) ∣ ∣ ≤ L ⋅ ∣ ∣ x + θ ⋅ ( y − x ) − x ∣ ∣ = L ⋅ θ ⋅ ∣ ∣ y − x ∣ ∣ ||\nabla f[x + \theta \cdot (y - x)] - \nabla f(x)|| \leq \mathcal L \cdot ||x + \theta \cdot (y -x) - x|| = \mathcal L \cdot \theta \cdot ||y - x|| ∣∣∇f[x+θ(yx)]f(x)∣∣L∣∣x+θ(yx)x∣∣=Lθ∣∣yx∣∣
整理有:
I l e f t ≤ ∫ 0 1 L ⋅ θ ⋅ ∣ ∣ y − x ∣ ∣ 2 d θ \mathcal I_{left} \leq \int_0^1 \mathcal L \cdot \theta \cdot ||y - x||^2 d\theta Ileft01Lθ∣∣yx2dθ
又因为 L , ∣ ∣ y − x ∣ ∣ 2 \mathcal L,||y - x||^2 L,∣∣yx2 θ \theta θ无关,因而从积分号中提出:
I l e f t ≤ L ⋅ ∣ ∣ y − x ∣ ∣ 2 ⋅ ∫ 0 1 θ d θ = L ⋅ ∣ ∣ y − x ∣ ∣ 2 ⋅ 1 2 θ 2 ∣ 0 1 = L 2 ⋅ ∣ ∣ y − x ∣ ∣ 2 = I r i g h t \begin{aligned} \mathcal I_{left} & \leq \mathcal L \cdot ||y - x||^2 \cdot \int_0^1 \theta d\theta \\ & = \mathcal L \cdot ||y - x||^2 \cdot \frac{1}{2} \theta^2|_0^1 \\ & = \frac{\mathcal L}{2} \cdot ||y - x||^2 \\ & = \mathcal I_{right} \end{aligned} IleftL∣∣yx201θdθ=L∣∣yx221θ201=2L∣∣yx2=Iright
证毕。

相关参考:
【优化算法】梯度下降法-二次上界

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69697.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java】智慧工地云平台源码-支持私有化部署+硬件设备

智慧工地硬件设备包括:AI识别一体机、智能广播音响、标养箱、塔机黑匣子、升降机黑匣子、吊钩追踪控制设备、扬尘监测设备、喷淋设备。 1.什么是AI危险源识别 AI危险源识别是指基于智能视频分析技术,对视频图像信息进行自动分析识别,以实时监…

AI一键生成数字人

AI一键生成数字人,不玩虚的 阅读时长:10分钟 本文内容: 结合开源AI,一键生成短视频发布到常见的某音,某手平台,狠狠赚一笔 前置知识: 基本的 python 编程知识Jupyter Notebook 使用过Linux 使用过 先上源码…

OCP China Day 2023:五大社区齐聚,加速开源开放创新与落地

8月10日,2023年开放计算中国社区技术峰会(OCP China Day 2023)在北京举行。智慧时代,计算多元化、应用多样化、技术复杂化正驱动数据中心新一轮变革,开源开放社区已成为推动数据中心持续创新的重要力量,通过…

激光切割机的操作中蛙跳技术是什么意思

其实,蛙跳技术就是指在激光切割机运行的过程中,机器换位置的方式。打个比方,你刚刚在这儿把孔1切好了,接下来就得跑到那儿把孔2切了。 在这个过程中,激光切割机就像是一只青蛙,要从一个位置跳到另一个位置。…

Flink源码之RPC

Flink是一个典型的Master/Slave分布式实时处理系统,分布式系统组件之间必然涉及通信,也即RPC,以下图展示Flink组件之间的关系: RPCGateWay 一般RPC框架可根据用户业务类生成客户端和服务器端通信底层代码,此时只需定…

Unity游戏源码分享-植物大战僵尸素材与源码

Unity游戏源码分享-植物大战僵尸素材与源码 完整版本下载地址: https://download.csdn.net/download/Highning0007/88191862

Spring kafka源码分析——消息是如何消费的

文章目录 概要端点注册创建监听容器启动监听容器消息拉取与消费小结 概要 本文主要从Spring Kafka的源码来分析,消费端消费流程;从spring容器启动到消息被拉取下来,再到执行客户端自定义的消费逻辑,大致概括为以下4个部分&#x…

无涯教程-Perl - glob函数

描述 此函数返回与EXPR匹配的文件的列表,这些文件将由标准Bourne shell进行扩展。如果EXPR未指定路径,请使用当前目录。如果省略EXPR,则使用$_的值。 从Perl 5.6开始,扩展是在内部完成的,而不是使用外部脚本。扩展遵循csh(以及任何派生形式,包括tcsh和bash)的扩展方式,其翻译…

Linux 发行版 Debian 12.1 发布

导读在今年 6 月初,Debian 12“bookworm”发布,而日前 Debian 迎来了 12.1 版本,主要修复系统用户创建等多个安全问题。 Debian 是最古老的 GNU / Linux 发行版之一,也是许多其他基于 Linux 的操作系统的基础,包括 Ub…

Docker安装 elasticsearch-head

目录 前言安装elasticsearch-head步骤1:准备1. 安装docker2. 搜索可以使用的镜像。3. 也可从docker hub上搜索镜像。4. 选择合适的redis镜像。 步骤2:拉取elasticsearch-head镜像拉取镜像查看已拉取的镜像 步骤3:创建容器创建容器方式1&#…

【C++标准模板库STL】map, unordered_map, set, unordered_set简介与常用函数

文章目录 map是STL中的标准容器,以键值对的形式存储,即为哈希表,并且是有序的unordered_map也是表示哈希表的容器,但是没有顺序,unordered_map查询单个key的时候效率比map高,但是要查询某一范围内的key值时…

在vue3+vite项目中使用jsx语法

如果我掏出下图,阁下除了私信我加入学习群,还能如何应对? 正文开始 前言一、下载资源二、利用vite工具引入babel插件总结 前言 最近在为部署人员开发辅助部署的工具,技术栈是vue3viteelectron,在使用jsx语法时&#x…

Oracle 知识篇+会话级全局临时表在不同连接模式中的表现

标签:会话级临时表、全局临时表、幻读释义:Oracle 全局临时表又叫GTT ★ 结论 ✔ 专用服务器模式:不同应用会话只能访问自己的数据 ✔ 共享服务器模式:不同应用会话只能访问自己的数据 ✔ 数据库驻留连接池模式:不同应…

k8s学习day03

第五章 Pod详解 本章节将详细介绍Pod资源的各种配置(yaml)和原理。 Pod介绍 Pod结构 每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类: 用户程序所在的容器,数量可多可少 Pause容器,这是每个…

模型训练----将日志输出为txt

1、写入txt 在云服务器上训练模型的时候,防止不显示输出,可以将训练日志写入txt import logging#初始化文件,filemodew每次覆盖文件 logging.basicConfig(filename./log.txt,format %(asctime)s - %(name)s - %(levelname)s - %(message)s-…

【学习日记】【FreeRTOS】手动任务切换详解

前言 本文是关于 FreeRTOS 中实现两个任务轮流切换并执行的代码详解。目前不支持优先级,仅实现两个任务轮流切换。 一、任务的自传 任务从生到死的过程究竟是怎么样的呢?(其实也没死),这个问题一直困扰着我&#xf…

【云原生】Docker 详解(三):Docker 镜像管理基础

Docker 详解(三):Docker 镜像管理基础 1.镜像的概念 镜像可以理解为应用程序的集装箱,而 Docker 用来装卸集装箱。 Docker 镜像含有启动容器所需要的文件系统及其内容,因此,其用于创建并启动容器。 Dock…

R语言初学者书籍推荐

Home | Bookdown 这个网站上有很多R语言的书籍,并且一直在更新,阅读起来没有难度。 今天搜索材料的时候,检索到下面这本书: 有输入,才会有输出。

【Tool】win to go 制作随身硬盘

前言 话说我一冲动买了512G固态硬盘,原本是装个ubuntu系统的,这个好装,但是用处太少,就像改成win10的 经历一堆坑之后,终于使用WTG安装好了 步骤 1.下载个WTG辅助工具 Windows To Go 辅助工具|WTG辅助工具 v5.6.1…

工程优化问题之三杆桁架设计研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…