【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文:https://arxiv.org/abs/2404.16022
代码:https://github.com/ToTheBeginning/PuLID

文章目录

  • Abstract
  • Introduction
  • Related Work
  • Methods

Abstract

我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customization(PuLID)。通过将Lightning T2I分支与标准扩散分支结合,PuLID引入了对比对齐损失和准确ID损失,最大程度地减少了对原始模型的干扰,确保了高ID保真度。实验表明,PuLID在ID保真度和可编辑性方面都表现出色。PuLID的另一个吸引人的特性是,在插入ID前后,图像的元素(例如背景、光照、构图和风格)尽可能保持一致。代码和模型将会发布在https://github.com/ToTheBeginning/PuLID。

Introduction

作为一种特定类别的定制化文本生成图像(T2I)方法【5, 30, 12, 17, 40, 42】,身份(ID)定制允许用户适配预训练的T2I扩散模型,以符合他们的个性化ID。一类方法【5, 30, 12, 17】通过在用户提供的同一ID的若干图像上微调某些参数,从而将ID嵌入到生成模型中。这些方法催生了许多流行的AI肖像应用程序,如PhotoAI和EPIK。

尽管基于微调的解决方案取得了可观的成果,但每个ID的定制需要耗费数十分钟的微调时间,因此使个性化过程经济成本较高。另一类方法【41, 42, 2, 36, 20, 19, 38】则放弃了每个ID微调的必要性,转而在一个庞大的肖像数据集上预训练一个ID适配器【11, 24】。这些方法通常利用编码器(例如CLIP图像编码器【27】)提取ID特征。然后,将提取的特征以特定方式(例如嵌入到交叉注意力层中)整合到基础扩散模型中。尽管这些无需微调的方法效率极高,但面临两个显著挑战。

  • ID插入会破坏原始模型的行为。一个纯粹的ID信息嵌入应具有两个特征。首先,理想的ID插入应仅改变与ID相关的方面,如面部、发型和肤色,而与特定身份不直接相关的图像元素,如背景、光照、构图和风格,应该与原始模型的行为保持一致。据我们所知,以前的工作并未关注这一点。尽管一些研究【42, 38, 20】展示了生成风格化ID的能力,但与ID插入前的图像相比,风格明显退化(如图1所示)。具有较高ID保真度的方法往往会导致更严重的风格退化。

其次,在ID插入后,仍应保持原始T2I模型遵循提示的能力。在ID定制的背景下,这通常意味着能够通过提示改变ID属性(例如年龄、性别、表情和发型)、方向和配件(例如眼镜)。为了实现这些特性,目前的解决方案通常分为两类。第一类涉及增强编码器。IPAdapter【42, 1】从早期版本的CLIP提取网格特征转向利用面部识别骨干【4】提取更抽象和相关的ID信息。尽管编辑性有所改善,但ID保真度还不够高。InstantID【38】通过包括一个额外的ID和标志控制网【43】来进行更有效的调节。尽管ID相似性显著提高,但却牺牲了一定程度的编辑性和灵活性。第二类方法【20】通过构建按ID分组的数据集支持非重建训练以增强编辑性;每个ID包含若干图像。然而,创建这样的数据集需要付出巨大的努力。而且,大多数ID对应于有限数量的名人,这可能会限制其对非名人的效果。

  • 缺乏ID保真度。考虑到我们对面部的高度敏感性,在ID定制任务中保持高度的ID保真度至关重要。受GAN时代【7】面部生成任务【29, 39】成功经验的启发,提高ID保真度的一个直接想法是在扩散训练中引入ID损失。然而,由于扩散模型的迭代去噪特性【10】,实现准确的x0需要多个步骤。以这种方式训练所消耗的资源可能高得令人望而却步。因此,一些方法【2】直接从当前时间步预测x0,然后计算ID损失。然而,当当前时间步较大时,预测的x0往往嘈杂且有缺陷。在这种条件下计算ID损失显然不准确,因为面部识别骨干【4】是在照片级真实感图像上训练的。尽管提出了一些变通方法,如仅在噪声较小的时间步计算ID损失【25】或通过额外的推理步骤预测x0【45】,但仍有改进空间。

在这项工作中,为了在减少对原始模型行为影响的同时保持高ID保真度,我们提出了PuLID,一种通过对比对齐实现的纯粹和快速的ID定制方法。具体而言,我们引入了一个Lightning T2I分支以及标准扩散去噪训练分支。利用最近的快速采样方法【23, 32, 21】,Lightning T2I分支可以在有限且可控的步骤内从纯噪声生成高质量图像。通过这个额外的分支,我们可以同时解决上述两个挑战。首先,为了最小化对原始模型行为的影响,我们构建了一个对比对,其中包括相同提示和初始潜在变量,有和没有ID插入。在Lightning T2I过程中,我们在语义上对齐对比对的UNet特征,指导ID适配器如何插入ID信息而不影响原始模型的行为。其次,由于我们现在在ID插入后有了精确和高质量的生成x0,我们可以自然地提取其面部嵌入并与真实面部嵌入计算准确的ID损失。值得一提的是,这种x0生成过程与实际测试环境一致。我们的实验表明,在这种情况下优化ID损失可以显著提高ID相似性。

贡献总结如下:(1) 我们提出了一种无需调整的方法,即PuLID,在减轻对原始模型行为影响的同时保持高ID相似性。(2) 我们引入了一个Lightning T2I分支和常规扩散分支。在这个分支中,我们结合了对比对齐损失和ID损失,以最小化ID信息对原始模型的污染,同时确保保真度。与当前主流方法提高ID编码器或数据集相比,我们提供了新的视角和训练范式。(3) 实验表明,我们的方法在ID保真度和可编辑性方面实现了SOTA性能。此外,与现有方法相比,我们的方法对模型的ID信息侵扰较少,使得我们的方法在实际应用中更加灵活。

Related Work

基于微调的文本生成图像ID定制。文本生成图像模型的ID定制旨在使预训练模型能够生成特定身份的图像,同时遵循文本描述。两个开创性的基于微调的工作【5, 30】努力实现这一目标。Textual Inversion【5】为用户提供的ID优化了一个新的词嵌入,而Dreambooth【30】则通过微调整个生成器进一步增强了保真度。随后,各种方法【12, 17, 8, 35】在生成器和嵌入空间探索了不同的微调范式,以实现更高的ID保真度和文本对齐。尽管这些进展显著,但每个ID的耗时优化过程(至少需要几分钟)限制了其更广泛的应用。

无需微调的文本生成图像ID定制。为了减少在线微调所需的资源,一系列无需微调的方法【36, 38, 25, 42, 20, 41, 3】应运而生,这些方法直接将ID信息编码到生成过程中。这些方法面临的主要挑战是,在保持高ID保真度的同时,尽量减少对T2I模型原始行为的干扰。为了最小化干扰,一个可行的方法是使用面部识别模型【4】提取更抽象和相关的面部领域特定表示,就像IP-Adapter-FaceID【1】和InstantID【38】所做的那样。包含同一ID的多张图像的数据集可以促进共同表示的学习【20】。尽管这些方法取得了一定的进展,但它们还没有从根本上解决干扰问题。值得注意的是,ID保真度较高的模型往往会对原始模型的行为造成更大的干扰。在本研究中,我们提出了一种新的视角和训练方法来解决这一问题。有趣的是,该方法不需要按ID分组的数据集,也不局限于特定的ID编码器。

为了提高ID保真度,以前的工作【16, 2】使用了ID损失,这一做法受到了先前基于GAN的工作【29, 39】的启发。然而,在这些方法中,通常在当前时间步使用单一步骤直接预测x0,这往往会导致嘈杂和有缺陷的图像。这些图像对于面部识别模型【4】来说并不理想,因为它们是在真实世界的图像上训练的。PortraitBooth【25】通过仅在噪声较小的阶段应用ID损失来缓解这一问题,但这忽略了早期步骤中的损失,从而限制了其整体有效性。Diffswap【45】通过使用两步而不是一步来获得更好的预测x0,尽管这种估计仍然包含嘈杂的伪影。在我们的工作中,通过引入Lightning T2I训练分支,我们可以在更准确的设置中计算ID损失。

我们注意到一个同时进行的工作LCM-Lookahead【6】,它也使用了快速采样技术(即LCM【23】)来实现更精确的x0预测。然而,该工作与我们的工作有几个不同之处。首先,LCM-Lookahead在传统的扩散去噪过程中对x0进行精确预测,而我们从纯噪声开始,迭代去噪到x0。我们的方法与实际测试设置更一致,使得ID损失的优化更加直接。其次,为了增强提示编辑能力,LCM-Lookahead利用了SDXL-Turbo【32】的模式崩溃现象来合成一致的ID数据集。然而,合成的数据集可能面临多样性和一致性挑战,作者发现,使用该数据集训练可能比其他方法更频繁地产生风格化结果。相比之下,我们的方法不需要按ID分组的数据集。相反,我们通过一种更基础和直观的方法,即对比对齐,来增强提示跟随能力。

扩散模型的快速采样。在实践中,扩散模型通常在1000步内进行训练。在推理过程中,这种冗长的过程可以借助高级采样方法【33, 22, 15】缩短到几十步。最近基于蒸馏的工作【21, 23, 32】进一步将这一生成过程加速到10步以内。其核心动机是指导学生网络对齐与基础教师模型更远的点。在本研究中,我们引入的Lightning T2I训练分支利用了SDXL-Lightning【21】加速技术,从而使我们能够在仅4步内从纯噪声生成高质量图像。

Methods

在这里插入图片描述
图2:PuLID框架概述。框架的上半部分展示了传统的扩散训练过程。从同一图像中提取的面部用作ID条件 ( C_{\text{id}} )。框架的下半部分展示了本研究中引入的Lightning T2I训练分支。该分支利用了最新的快速采样方法,通过几步迭代去噪从纯噪声生成高质量图像(本文中为4步)。在这个分支中,我们构建了有ID注入和无ID注入的对比路径,并引入了对齐损失,以指导模型如何在不破坏原始模型行为的情况下插入ID条件。由于该分支可以生成照片级真实感图像,这意味着我们可以实现更准确的ID损失优化。

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696090.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

北航第五次数据结构与程序设计编程题复习

北航第五次数据结构与程序设计编程题复习 树叶节点遍历(树-基础题)计算器(表达式计算-表达式树实现)服务优化词频统计(树实现) 树叶节点遍历(树-基础题) 【问题描述】 从标准输入中…

Golang的协程调度器GMP

目录 GMP 含义 设计策略 全局队列 P的本地队列 GMP模型以及场景过程 场景一 场景2 场景三 场景四 场景五 场景六 GMP 含义 协程调度器,它包含了运行协程的资源,如果线程想运行协程,必须先获取P,P中还包含了可运行的G…

Vue15-watch对比计算属性

一、姓名案例 1-1、watch实现 1-2、计算属性 对比发现: 计算属性比watch属性更简略一些。 1-3、计算属性 VS 侦听属性 1-4、需求变更 计算属性中不能开启异步任务!!!因为计算属性靠return返回值。但是watch靠亲自写代码去改。 1-…

一款开源文件加速下载利器

前言 大文件的下载,浏览器支持不是很好,今天下载了一个20个G的文件,连续失败了好多次。 然后寻找到了一个开源的下载工具gospeed,可以完美的解决这个问题。而且下载速度快。 简介 Gopeed(全称 Go Speed)&am…

vscode copilot git commit 生成效果太差,用其他模型替换

问题 众所周知,copilot git commit 就像在随机生成 git commit 这种较为复杂的内容还是交给大模型做比较合适 方法 刚好,gitlens 最近开发了 AI commit的功能,其提供配置url api可以实现自定义模型 gitlens 只有3种模型可用&#xff1a…

重邮计算机网络803-(2)物理层

一.物理层 1.介绍 物理层的主要任务描述为确定与传输媒体的接口的一些特性,即: ①机械特性 指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。 ②电气特性 指明在接口电缆的各条线上出现的电压的范围。 ③功能特性 指明某条线上…

让AI做2024新高考1卷数学最后一题:AI智商横向对比!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

动手学深度学习4.10 实战Kaggle比赛:预测房价-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。 本节课程地址:实战 Kaggle 比赛:预测房价_哔哩哔哩_bilibili 本节教材地址:4.10. 实战Ka…

Keil软件仿真的使用

一、软件的初始化设置 初始设置可以按照下图,这里我使用的是STM32F103C8T6,所以单片机型号为STM32F103C8,这个设置在Debug目录下。然后进行时钟的设置,我们板上晶振为8M,这里将时钟改为8. 或许有人想问如果是别的型号单…

Vue3学习记录第三天

Vue3学习记录第三天 背景说明学习记录Vue3中shallowReactive()和shallowRef()Vue3中toRaw()和markRaw()前端...语法Vue3中readonly()和shallowReadonly()函数 背景 之前把Vue2的基础学了, 这个课程的后面有简单介绍Vue3的部分. 学习知识容易忘, 这里仅简答做一个记录. 内容都很…

# RocketMQ 实战:模拟电商网站场景综合案例(一)

RocketMQ 实战:模拟电商网站场景综合案例(一) 一、内容介绍 1、案例介绍: 1.1 业务分析 1)下单业务 2)支付业务 1.2 问题分析 2、技术分析 2.1 技术选型: 1)SpringBoot 2&…

Zynq7000 系列FPGA模块化仪器

• 基于 XilinxXC7Z020 / 010 / 007S • 灵活的模块组合 • 易于嵌入的紧凑型外观结构 • 高性能的 ARM Cortex 处理器 • 成熟的 FPGA 可编程逻辑 ,基于 IP 核的软件库 FPGA 控制器 Zynq7000 系列模块是基于 Xilinx XC7Z020/010/007S 全可编程片上系统 (SoC) 的…

【PPT技巧】PPT文件设置了修改权限,如何取消权限编辑文件?

不知道大家在使用PPT文件的时候,是否遇到过下面的提示框,这就是PPT文件设置了修改权限,只有输入密码才可以编辑文件。 如果我们没有输入密码,以只读方式进入,那么我们会发现功能栏中的按钮全是灰色,无法使用…

Vue3【二】 VSCode需要安装的Vue语法插件

VSCode需要安装的 适配Vue3的插件 Vue-Official插件安装

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细) flyfish 马氏距离的公式是由印度统计学家【普拉萨纳钱德拉马哈拉诺比斯(Prasanta Chandra Mahalanobis)】)(好长的名字&#xff…

STM32F103C8T6 HAL库 USART1 DMA方式接收数据

前言: 前面的两篇文章都说关于发送的,HAL库发送数据可以调用现成的函数,而接收数据,现成函数不太好用。这里为了记录了一下自己参考了网上几个大佬的代码,整理了一下USART1 DMA方式接受数据的代码,…

【python】OpenCV—Histogram Matching(9.2)

学习来自OpenCV基础(17)基于OpenCV、scikit-image和Python的直方图匹配 文章目录 直方图匹配介绍scikit-image 中的直方图匹配小试牛刀风格迁移 直方图匹配介绍 直方图匹配(Histogram Matching)是一种图像处理技术,旨…

一文详解大模型微调全流程

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学. 针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 汇总合集&…

11-数组与指针深入理解——题型理解

11-数组与指针深入理解——题型理解 文章目录 11-数组与指针深入理解——题型理解一、理解题1二、理解题二三、理解题三四、理解题四五、理解题五六、理解题六 一、理解题1 #include <stdio.h>int main(void) {int (*p)[5] NULL; // 定义一个指向 拥有5个整型数据的数组…

Tessy学习系列(三):单元测试——官方例程isValueInRange

一、工程创建 &#xff08;1&#xff09;新建工程 注意&#xff1a;工程名称以及路劲不能包含空格和中文 &#xff08;2&#xff09;新建测试集与单元测试模块 新建测试集 新建单元测试模块 设置测试模块为单元测试模块并选择GNU GCC编译器如果需要其他的编译器&#xff0c;…