归并排序的递归与非递归实现

递归实现

归并排序有点类似于二叉树的后序遍历,是一种基于分治思想的排序算法。具体过程如下:

但要注意,在归并时要额外开辟一个与原数组同等大小的空间用来存储每次归并排序后的值,然后再拷贝到原数组中。

代码实现:

#include<stdlib.h>
#include<string.h>

// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{
	//当区间只有一个值或没有值时,返回
	if (left >= right)
	{
		return;
	}

	int mid = (left + right) / 2;

	//递归左右区间
	_MergeSort(a, tmp, left, mid);
	_MergeSort(a, tmp, mid + 1, right);

	//归并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;

	int i = left;

	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}

		else
		{
			tmp[i++] = a[begin2++];
		}
	}

	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}

	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}

	//将数据拷贝到原数组中
	memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}

void MergeSort(int* a, int n)
{
	//开辟与a同等大小的空间
	int* tmp = (int*)malloc(sizeof(int) * n);

	//实现归并的函数
	_MergeSort(a, tmp, 0, n - 1);

	free(tmp);
	tmp = NULL;
}

非递归实现

在实现快排时,我们用栈来实现非递归,但归并排序时,我们用栈来实现似乎有些麻烦。快排在递归到底时,就已经数组排为有序,但层序遍历不行,层序遍历在递归至最底层时才开始排序,如果要用栈来实现,就需要用两个栈来存储,且过程很麻烦。

因此,在这里我们采用循环的方式来实现层序遍历的非递归。先来看具体过程:

根据上图我们可以得到代码:(但这个代码只能实现2的次方倍的数组个数的排序,其它的会出现数组越界的问题)

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{
	//开辟与a同等大小的空间
	int* tmp = (int*)malloc(sizeof(int) * n);

	//归并
	int gap = 1;
	//gap为归并的每组数据的个数
	while (gap < n)
	{
		//i控制每次归并的起始位置的下标
		for (int i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			int j = i;

			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}

				else
				{
					tmp[j++] = a[begin2++];
				}
			}

			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}

			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}

			//将数据拷贝到原数组中
			memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
		}

		gap = 2 * gap;
	}
	
	free(tmp);
	tmp = NULL;
}

要想实现数组归并排序的非递归,我们还要再继续解决数组越界的问题。

先来看越界情况的分析:

代码实现:

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{
	//开辟与a同等大小的空间
	int* tmp = (int*)malloc(sizeof(int) * n);

	//归并
	int gap = 1;
	//gap为归并的每组数据的个数
	while (gap < n)
	{
		//i控制每次归并的起始位置的下标
		for (int i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			int j = i;

			//结束循环
			if (begin2 >= n)
			{
				break;
			}

			//修正end2
			if (end2 >= n)
			{
				end2 = n - 1;
			}

			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}

				else
				{
					tmp[j++] = a[begin2++];
				}
			}

			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}

			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}

			//将数据拷贝到原数组中
			memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
		}
		gap = 2 * gap;
	}
	
	free(tmp);
	tmp = NULL;
}

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void Print(int* arr, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", arr[i]);
	}
	printf("\n");
}

// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{
	//当区间只有一个值或没有值时,返回
	if (left >= right)
	{
		return;
	}

	int mid = (left + right) / 2;

	//递归左右区间
	_MergeSort(a, tmp, left, mid);
	_MergeSort(a, tmp, mid + 1, right);

	//归并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;

	int i = left;

	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}

		else
		{
			tmp[i++] = a[begin2++];
		}
	}

	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}

	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}

	//将数据拷贝到原数组中
	memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}

void MergeSort(int* a, int n)
{
	//开辟与a同等大小的空间
	int* tmp = (int*)malloc(sizeof(int) * n);

	//实现归并的函数
	_MergeSort(a, tmp, 0, n - 1);

	free(tmp);
	tmp = NULL;
}

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{
	//开辟与a同等大小的空间
	int* tmp = (int*)malloc(sizeof(int) * n);

	//归并
	int gap = 1;
	//gap为归并的每组数据的个数
	while (gap < n)
	{
		//i控制每次归并的起始位置的下标
		for (int i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			int j = i;

			//结束循环
			if (begin2 >= n)
			{
				break;
			}

			//修正end2
			if (end2 >= n)
			{
				end2 = n - 1;
			}

			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}

				else
				{
					tmp[j++] = a[begin2++];
				}
			}

			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}

			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}

			//将数据拷贝到原数组中
			memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
		}
		gap = 2 * gap;
	}
	
	free(tmp);
	tmp = NULL;
}
 
int main()
{
	int arr[] = { 6,5,7,9,2,0,3,1,8,4,10 };
	int len = sizeof(arr) / sizeof(int);
	MergeSortNonR(arr, len);
	Print(arr, len);
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696019.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java学习-JDBC(四)

连接池 现有问题 每次操作数据库都需要重新获取新连接&#xff0c;使用完毕后需close释放&#xff0c;频繁的创建和销毁造成资源浪费连接的数量无法把控&#xff0c;对服务器造成巨大压力 连接池 连接池是数据库连接对象的缓冲区&#xff0c;通过配置&#xff0c;由连接池负…

[word] word悬挂缩进怎么设置? #经验分享#职场发展#经验分享

word悬挂缩进怎么设置&#xff1f; 在编辑Word的时候上方会有个Word标尺&#xff0c;相信很多伙伴都没使用过。其实它隐藏着很多好用的功能&#xff0c;今天就给大家分享下利用这个word标尺的悬挂缩进怎么设置&#xff0c;一起来看看吧&#xff01; 1、悬挂缩进 选中全文&…

C语言详解(文件操作)1

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…

C++:SLT容器-->deque

C:SLT容器-->deque 1. 构造函数2. deque 赋值操作3. deque 大小操作4. deque 插入和删除5. deque 容器数据存取6. deque 排序操作 双端数组&#xff0c;可以对头部和尾部进行插入删除操作 需要导入头文件#include <deque> 1. 构造函数 deque deqT; // 默认构造函数 de…

⌈ 传知代码 ⌋ 深度知识追踪

&#x1f49b;前情提要&#x1f49b; 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间&#xff0c;对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…

Ruoyi5.x RuoYi-Vue-Plus新建Translation翻译类

若依框架&#xff08;RuoYi&#xff09;中的Translation翻译类主要作用在于实现字段值的转换或翻译功能&#xff0c;以提高数据展示的准确性和友好性。以下是其具体作用的一些关键点&#xff1a; 字段值转换&#xff1a;若依框架在处理数据时&#xff0c;有时需要将某些字段的…

【Linux多线程】线程的终止、等待和分离

文章目录 线程终止正常退出return 退出pthread_exit函数终止线程 pthread_cancel强制终止线程进程终止 线程等待为什么需要等待线程&#xff1f;pthread_join函数 分离线程pthread_detach函数 线程终止 下面给出终止线程的三种方式&#xff1a; 正常退出&#xff1a; 线程执行…

小冬瓜AIGC 手撕LLM 拼课

小冬瓜aigc手撕LLM学习 官方认证 手撕LLMRLHF速成班-(附赠LLM加速分布式训练超长文档&#xff09; 帮助多名同学上岸LLM方向&#xff0c;包括高校副教授&#xff0c;北美PhD&#xff0c;大厂等 课程名称【手撕LLMRLHF】 授课形式&#xff1a;在线会议直播讲解课后录播 时间&…

祝大家端午节安康

五月到端午&#xff0c;愿你端来快乐&#xff0c;无烦无恼&#xff1b;端来好运&#xff0c;无时无刻&#xff1b;端来健康&#xff0c;无忧无虑&#xff1b;端来财富&#xff0c;五谷丰登&#xff1b;端来祝福&#xff0c;五彩缤纷。端午节安康&#xff01;

记录一次被谷歌封号后又解封的过程

先提前恭祝2024年所有参加高考的学子们都能金榜题名&#xff0c;会的全对&#xff0c;不会的蒙的全对&#xff01; 一、背景 众所周知&#xff0c;谷歌、ios应用市场对app的审查都是极其严格的&#xff0c;开发者稍有不慎就会被谷歌下架应用&#xff0c;乃至封号。我们公司是做…

Linux:冯·诺依曼体系结构和操作系统

文章目录 冯诺依曼体系结构操作系统概念操作系统的作用定位机制操作系统如何管理硬件 冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系。 截至目前&#xff0c;我们所认识的计算机&…

【Python】在【数据挖掘】与【机器学习】中的应用:从基础到【AI大模型】

目录 &#x1f497;一、Python在数据挖掘中的应用&#x1f495; &#x1f496;1.1 数据预处理&#x1f49e; &#x1f496;1.2 特征工程&#x1f495; &#x1f497;二、Python在机器学习中的应用&#x1f495; &#x1f496;2.1 监督学习&#x1f49e; &#x1f496;2.2…

高考分数查询结果自动推送至微信(卷II)

祝各位端午节安康&#xff01;只要心中无结&#xff0c;每天都是节&#xff0c;开心最重要&#xff01; 在上一篇文章高考分数查询结果自动推送至微信&#xff08;卷Ⅰ&#xff09;-CSDN博客中谈了思路&#xff0c;今天具体实现。文中将敏感信息已做处理&#xff0c;读者根据自…

6.全开源源码---小红书卡片-跳转微信-自动回复跳转卡片-商品卡片-发私信-发群聊-安全导流不封号-企业号白号都可以用

现在用我们的方法&#xff0c;可以规避违规风险&#xff0c;又可以丝滑引流&#xff0c;因为会以笔记的形式发给客户&#xff0c;点击之后直接跳微信&#xff0c;我们来看看演示效果吧&#xff08;没有风险提示&#xff09; 无论是引流还是销售产品都会事半功倍。

redis03 补充 redis驱动模型:事件驱动

1.文件事件 1.1 1.2 注&#xff1a; epoll是linux系统的底层IO多路复用技术 kqueue是mac的底层IO多路复用技术 在 Epoll 中&#xff0c;Epoll 就是事件通知器&#xff0c;可以向 Epoll 注册我们感兴趣的事件。 1.3 1.4 5. 5.1 5.2 5.35.4

onesixtyone一键扫描SNMP服务(KALI工具系列二十)

目录 1、KALI LINUX 简介 2、onesixtyone工具简介 3、在KALI中使用onesixtyone 3.1 目标主机IP&#xff08;win&#xff09; 3.2 KALI的IP 4、操作示例 4.1 扫描目标主机 4.2 加上团队名称 4.3 输出详细结果 4.4 扫描整个网段 5、总结 1、KALI LINUX 简介 Kali Lin…

ThinkPHP发邮件配置教程?群发功能安全吗?

ThinkPHP发邮件的注意事项&#xff1f;如何优化邮件发送的性能&#xff1f; 无论是用户注册、密码重置还是消息提醒&#xff0c;发送邮件都是一个常见的需求。AokSend将详细介绍如何在ThinkPHP框架中配置和发送邮件&#xff0c;帮助开发者轻松实现邮件功能。 ThinkPHP发邮件&…

Discuz! X3.4发帖时间修改插件批量操作版

下载地址&#xff1a;Discuz! X3.4发帖时间修改插件批量操作版 发帖时间与回复时间说明 1、使用本插件修改发帖时间&#xff0c;则帖子中的回复楼层的时间会保持同步同间隔修改&#xff0c;所谓同步同间隔就是如果某个回复是在主题发布之后一小时回复的&#xff0c;那么修改之…

MySQL—多表查询—练习(1)

一、引言 上几篇关于多表查询的基本几个部分全部学习完了。 多表查询的基本类型的查询包括以下&#xff1a; 1、内连接&#xff08;隐式内连接、显示内连接&#xff09;&#xff1a;... [INNER] JOIN ... ON 条件; &#xff09; 2、外连接&#xff08;左外连接、右外连接&…

[沉迷理论]进制链表树

往期文章推荐&#xff1a; 题解之最大子矩阵-CSDN博客 洛谷P1115最大子段和[神奇的题目]-CSDN博客 &#xff08;一条神奇的分割线&#xff09; 前言 好久没有更新的我总算在百忙之中抽出时间写了篇博客。 最近总算结束了动态规划的学习&#xff0c;真的是头昏脑涨啊。 最…