Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene论文学习

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝

Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(一)ReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(二) PyReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(四) ReFT 微调训练及模型推理

Llama模型家族之Stanford NLP ReFT源代码探索 (一)数据预干预

Llama模型家族之Stanford NLP ReFT源代码探索 (二)interventions.py 代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene学习

在这里插入图片描述

Pyvene论文

https://arxiv.org/abs/2403.07809
在这里插入图片描述
这篇论文介绍了一个名为pyvene的Python库,用于在PyTorch模型中进行自定义干预操作。这些干预可以是静态的或包含可训练参数的复杂方案,并且可以通过直观的配置格式轻松实现。论文通过因果抽象和知识定位等解释性分析展示了该库的强大功能,并将其发布到Python Package Index(PyPI)上,提供了代码、文档和教程。这个库为神经模型的干预提供了一种统一而灵活的框架,并支持与其他研究人员分享干预后的模型。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在TinyStories-33M上进行推理时干预(Li等人,2023a)。模型被提示为“从前有一个”,并被要求完成这个故事。我们在每个解码步骤的所有层的MLP输出中添加了一个静态词嵌入(代表“快乐”或“悲伤”),其系数为0.3。提供了pyvene的完整实现。原始生成和干预后的生成都使用了贪婪解码。
在这里插入图片描述
论文实验
本文介绍了使用PyVene库进行模型干预和解释的案例研究。进行了两个实验:

  • 第一个实验是仿照Meng等人(2022)的工作,在GPT-2 XL中寻找事实之间的关联。在这个任务中,首先通过添加高斯噪声来干扰输入嵌入,并然后恢复每个层中的特定激活以识别与结果相关的信息。具体来说,他们恢复了每个标记在每个层中的Transformer块输出、MLP激活和注意力输出。实验结果显示,这种方法可以有效地找到事实之间的关联。

  • 第二个实验是在一个简单的性别代词预测任务中展示干预和探针训练的效果。在这个任务中,使用了一维分布式对齐搜索,试图学习一个表示性别的子空间。他们使用了一个固定的长度为4的模板,其中名字是从一个词汇表中随机选择的,包括47个男性常用的名字和10个女性常用的名字,以及相应的性别代词作为输出标记。实验结果显示,可训练的干预可以在各个层和位置上找到更稀疏的性别表示,而线性探针则几乎在所有组件上都实现了100%的分类准确率。这表明即使在不相关的因果关系中,探针也可能实现很高的性能。

  • 这些实验展示了PyVene库在模型干预和解释方面的强大功能。

论文总结

本文介绍了一个名为pyvene的Python库,支持干预研究在神经模型上的应用。该库具有以下优点:

  • 支持自定义干预类型和不同类型的模型架构。
  • 支持复杂的干预方案,并且可以共享干预后的模型。
  • 可以通过在线模型中心(如HuggingFace)与他人分享干预后的模型。
  • 提供了灵活的方法来解释和改进模型。

未来展望

提出了两个主要的研究方向:

  • 扩展默认的干预类型和模型类型。虽然pyvene是可扩展的,但拥有更多的内置类型可以帮助 更容易地吸引新用户。
  • pyvene旨在支持复杂的干预方案,但这会导致计算效率低下。随着语言模型越来越大, 希望调查如何通过多节点和多GPU训练来提高干预效率。

对模型内部状态的干预是人工智能许多领域的基本操作,包括模型编辑、转向、鲁棒性和可解释性。为了促进这种研究,我们引入了pyrene,这是一个开源Python库,支持对一系列不同PyTorch模块的可定制干预。pyrvene以直观的配置格式支持复杂的干预方案,其干预可以是静态的或包括可训练的参数。

论文 Inference-Time Intervention

Inference-Time Intervention

在这里插入图片描述
这篇论文介绍了一种名为“推理时间干预(ITI)”的技术,旨在提高大型语言模型(LLM)的“实际性”。该技术通过在推断过程中改变模型激活,在有限数量的注意力头中沿着一组方向进行调整,从而显著提高了LLAMA模型在TruthfulQA基准测试上的表现。论文使用了一个名为Alpaca的指令微调LLAMA,并将ITI应用于它,将其实际性从32.5%提高到65.1%。此外,作者还发现了一个实际性与帮助性之间的权衡,并展示了如何通过调整干预强度来平衡它们。ITI是一种最小侵入性和计算上经济实惠的技术,而且数据效率高:尽管需要大量的注释才能使RLHF等方法生效,但ITI仅使用几百个示例即可定位真实的方向。论文的研究结果表明,即使表面上产生谎言,LLM可能也具有内部表示某件事可能是实际的的能力。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

GPT 自回归语言模型架构、数学原理及内幕-简介

GPT 自回归语言模型架构、数学原理及内幕-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

Transformer语言模型架构、数学原理及内幕机制-简介

Transformer语言模型架构、数学原理及内幕机制-简介

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/694279.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通过双模式对抗提示越狱视觉语言模型

最近,将视觉整合到大型语言模型(LLMs)中的兴趣显著增加,催生了大型视觉语言模型(LVLMs)。这些模型结合了视觉和文本信息,如LLaVA和Gemini,已经在包括图像字幕、视觉问题回答和图像检…

「动态规划」打家劫舍的变形题,你会做吗?

213. 打家劫舍 IIhttps://leetcode.cn/problems/house-robber-ii/description/ 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#x…

下载安装Thonny并烧录MicroPython固件至ESP32

Thonny介绍 一、Thonny的基本特点 面向初学者:Thonny的设计初衷是为了帮助Python初学者更轻松、更快速地入门编程。它提供了直观易懂的用户界面和丰富的功能,降低了编程的门槛。轻量级:作为一款轻量级的IDE,Thonny不会占用过多的…

中国各省份简称的命名根据是什么?省份简称顺口溜

我国共有34个省级行政区域,包括23个省,5个自治区,4个直辖市,2个特别行政区。每个省份都有自己对应的简称,而省份简称的由来,可以分为以下三种: 一、取省份全称中的一部分作为简称 比如,北京的简称是“京”,天津的简称是“津”,东北三兄弟的简称是“黑吉辽”,这种简单…

数据库之PostgreSQL详解

一、PostgreSQL介绍 PostgreSQL是一个功能强大的 开源 的关系型数据库。底层基于C实现。 PostgreSQL的开源协议和Linux内核版本的开源协议是一样的。。BDS协议,这个协议基本和MIT开源协议一样,说人话,就是你可以对PostgreSQL进行一些封装&a…

OpenFeign远程接口调用使用公共模块出现的错误

今天在使用openfeign和sentinel实现fallback服务降级时遇到找不到类型的异常 检查代码发现没有错误,EnableFeignClients也在启动类上标注了 错误信息:A component required a bean of type com.zxc.cloud.apis.PayFeignSentinelApi that could not be f…

类和对象(下+)_const成员、初始化列表、友元、匿名对象

类和对象(下) 文章目录 类和对象(下)前言一、const成员二、友元1.友元函数2.友元类 三、初始化列表四、explicit关键字五、匿名对象总结 前言 static成员、内部类、const成员、初始化列表、友元、匿名对象 一、const成员 将cons…

[Cloud Networking] Layer 2

文章目录 1. 什么是Mac Address?2. 如何查找MAC地址?3. 二层数据交换4. [Layer 2 Protocol](https://blog.csdn.net/settingsun1225/article/details/139552315) 1. 什么是Mac Address? MAC 地址是计算机的唯一48位硬件编码,嵌入到网卡中。 MAC地址也…

100道面试必会算法-32-二叉树右视图用栈实现队列

100道面试必会算法-32-二叉树右视图&用栈实现队列 给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4]示例 2: 输入: [1,n…

基于vue的音乐播放器的设计与实现(论文+源码)_kaic

摘 要 当下,如果还依然使用纸质文档来记录并且管理相关信息,可能会出现很多问题,比如原始文件的丢失,因为采用纸质文档,很容易受潮或者怕火,不容易备份,需要花费大量的人员和资金来管理用纸质文…

java版spring cloud 深入探究ERP管理系统源码:功能模块详解与操作流程梳理

随着数字化转型的深入,企业对于高效、稳定且具有扩展性的管理系统的需求日益增加。为此,我们开发了一套基于Java技术的鸿鹄ERP管理系统,该系统整合了Spring Cloud Alibaba、Spring Boot、MybatisPlus、Redis等前沿技术,并采用了VU…

Tensorflow入门实战 P03-天气识别

目录 1、完整代码 2、运行结果 2.1 查看20张图片 2.2 程序运行 2.3 运行结果 3、小结 ① 代码运行过程中有报错: ② 修改代码如下: ③ 分析原因: 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者&…

【MySQL】服务器配置和管理

本文使用的MySQL版本是8.0 MySQL服务器介绍 MySQL服务器通常说的是mysqld程序。 mysqld 是 MySQL 数据库服务器的核心程序,负责处理客户端的请求、管理数据库和执行数据库操作。管理员可以通过配置文件和各种工具来管理和监控 mysqld 服务器的运行 官方文档&…

OrangePi AIpro小试牛刀-目标检测(YoloV5s)

非常高兴参加本次香橙派AI Pro,香橙派联合华为昇腾打造的一款AI推理开发板评测活动,以前使用树莓派Raspberry Pi4B 8G版本,这次有幸使用国产嵌入式开发板。 一窥芳容 这款开发板搭载的芯片是和华为昇腾的Atlas 200I DK A2同款的处理器&#…

Vue3【十四】watchEffect自动监视多个数据实现,不用明确指出监视哪个数据

Vue3【十四】watchEffect自动监视多个数据实现&#xff0c;不用明确指出监视哪个数据 Vue3【十四】watchEffect自动监视多个数据实现&#xff0c;不用明确指出监视哪个数据 进入立即执行一次&#xff0c;并监视数据变化 案例截图 目录结构 代码 Person.vue <template>&…

element-plus的el-text组件(文本组件)的介绍和使用

el-text&#xff08;适合文本操作的组件&#xff09; 设置文本type,如default,primary,success,info,warning,danger超出容器尺寸自动省略&#xff0c;tuncated属性设置size属性控制文本大小&#xff0c;有large,default,small设置tag属性&#xff0c;值为html5标签名&#xf…

统信UOS1070上配置文件管理器默认属性02

原文链接&#xff1a;统信UOS 1070上配置文件管理器默认属性01 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇在统信UOS 1070上配置文件管理器默认属性的第二篇文章——配置工作区视图。文件管理器中的工作区视图配置可以帮助我们更好地组织和管理文件&#xff0c;…

你还在纠结U盘怎么选吗?小白带你来看

前言 2024年的618活动已经开始了&#xff0c;这个活动买电子产品着实是比其他时间要便宜很多。 前几天小白的一个好朋友问我&#xff1a;U盘该怎么选&#xff1f; 呃&#xff0c;本来是想写“老朋友”的&#xff0c;结果她愣是要我改成“好朋友”。 行吧&#xff0c;那就好朋…

unity3d:GameFramework+xLua+Protobuf+lua-protobuf,与服务器交互收发协议

概述 1.cs收发协议&#xff0c;通过protobuf序列化 2.lua收发协议&#xff0c;通过lua-protobuf序列化 一条协议字节流组成 C#协议基类 CSPacketBase&#xff0c;SCPacketBaseC#用协议基类 proto生成的CS类&#xff0c;基于这两个基类。分别为CSPacketBase是客户端发送至服…

Linux内核epoll

Linux网络IO模型 同步和异步&#xff0c;阻塞和非阻塞 Linux下的五种IO模型 同步和异步&#xff0c;阻塞和非阻塞 Linux 下的五种I/O模型&#xff1a; 阻塞IO&#xff08;Blocking IO&#xff09; BIO 非阻塞IO&#xff08;No Blocking IO&#xff09; IO复用&#xff08;se…