【机器学习】机器学习与智能交通在智慧城市中的融合应用与性能优化新探索

文章目录

    • 引言
    • 机器学习与智能交通的基本概念
      • 机器学习概述
        • 监督学习
        • 无监督学习
        • 强化学习
      • 智能交通概述
        • 交通流量预测
        • 交通拥堵管理
        • 智能信号控制
        • 智能停车管理
    • 机器学习与智能交通的融合应用
      • 实时交通数据分析
        • 数据预处理
        • 特征工程
      • 交通流量预测与优化
        • 模型训练
        • 模型评估
      • 智能信号控制与优化
        • 强化学习应用
      • 智能停车管理与优化
        • 深度学习应用
    • 性能优化
      • 模型压缩与优化
      • 分布式训练
      • 高效推理
    • 案例研究
      • 谷歌的智能交通管理系统
        • 推荐算法
        • 个性化推荐
      • 特斯拉的智能驾驶系统
        • 自动驾驶算法
        • 智能驾驶优化
    • 未来展望
      • 跨领域应用
      • 智能化系统
      • 人工智能伦理
      • 技术创新
    • 结论

引言

随着城市化进程的加速,智慧城市建设成为各国政府和企业关注的重点。而智能交通作为智慧城市的重要组成部分,借助机器学习技术,可以显著提高城市交通管理的效率和智能化水平。通过融合机器学习与智能交通技术,智慧城市能够实现交通流量预测、交通拥堵管理、智能信号控制等功能,从而提升市民出行体验和城市交通管理水平。本文将探讨机器学习与智能交通在智慧城市中的融合应用,并重点讨论性能优化的新方法和新探索。
在这里插入图片描述

机器学习与智能交通的基本概念

机器学习概述

机器学习是一种通过数据训练模型,并利用模型对新数据进行预测和决策的技术。其基本思想是让计算机通过样本数据学习规律,而不是通过明确的编程指令。根据学习的类型,机器学习可以分为监督学习、无监督学习和强化学习。

监督学习

监督学习是通过带标签的数据集训练模型,使其能够对新数据进行分类或回归预测。常见的算法包括线性回归、逻辑回归、支持向量机、决策树和神经网络等。

无监督学习

无监督学习是在没有标签的数据集上进行训练,主要用于数据聚类和降维。常见的算法包括K-means聚类、层次聚类和主成分分析(PCA)等。

强化学习

强化学习是一种通过与环境交互学习最优行为策略的技术。智能体通过试错法在环境中学习,以最大化累积奖励。常见的算法包括Q-learning、深度Q网络(DQN)和策略梯度方法等。

智能交通概述

智能交通系统(ITS)是一种通过信息技术、数据通信技术、传感器技术、控制技术及计算机技术等相互配合,建立起的现代化的交通管理系统。智能交通系统的主要功能包括交通流量预测、交通拥堵管理、智能信号控制和智能停车管理等。

交通流量预测

交通流量预测是智能交通系统的重要功能之一。通过对历史交通数据进行分析和建模,可以预测未来一段时间内的交通流量,为交通管理提供决策支持。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

# 示例交通流量数据
data = {
    'time': ['2023-01-01 08:00', '2023-01-01 08:05', '2023-01-01 08:10', '2023-01-01 08:15'],
    'traffic_volume': [100, 120, 130, 110]
}

df = pd.DataFrame(data)

# 数据预处理
df['time'] = pd.to_datetime(df['time'])
df['hour'] = df['time'].dt.hour
df['minute'] = df['time'].dt.minute

X = df[['hour', 'minute']]
y = df['traffic_volume']

# 数据集拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 模型训练
model = RandomForestRegressor()
model.fit(X_train, y_train)

# 模型预测
predictions = model.predict(X_test)
print(predictions)
交通拥堵管理

交通拥堵管理是智能交通系统的重要组成部分。通过实时监测和分析交通数据,可以识别和预测交通拥堵情况,从而采取相应的措施缓解交通压力。

import numpy as np
from sklearn.cluster import KMeans

# 示例交通拥堵数据
data = np.array([
    [1, 100], [2, 120], [3, 130], [4, 110],
    [5, 300], [6, 320], [7, 330], [8, 310]
])

# K-means聚类
kmeans = KMeans(n_clusters=2, random_state=0).fit(data)
print(kmeans.labels_)

在这里插入图片描述

智能信号控制

智能信号控制是通过机器学习和优化算法,动态调整交通信号灯的时长和顺序,以提高交通流量和减少等待时间。

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize

# 示例交通信号控制数据
time_intervals = np.array([30, 45, 60, 75, 90])  # 信号灯时长备选值

def traffic_delay(time_intervals):
    # 假设的交通延迟函数
    delays = np.random.randint(20, 100, size=time_intervals.shape)
    return np.sum(delays)

# 优化信号灯时长
result = minimize(traffic_delay, time_intervals, method='Nelder-Mead')
optimal_intervals = result.x
print(optimal_intervals)

# 绘制优化结果
plt.plot(time_intervals, traffic_delay(time_intervals), 'b-', label='Original')
plt.plot(optimal_intervals, traffic_delay(optimal_intervals), 'r-', label='Optimized')
plt.xlabel('Time Intervals')
plt.ylabel('Traffic Delay')
plt.legend()
plt.show()
智能停车管理

智能停车管理通过传感器和机器学习算法,实时监测停车位的使用情况,指导车辆快速找到停车位,提高停车效率。

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

# 示例停车位数据
data = np.array([
    [1, 0], [2, 1], [3, 0], [4, 1],
    [5, 0], [6, 1], [7, 0], [8, 1]
])

X = data[:, 0].reshape(-1, 1)  # 停车位编号
y = data[:, 1]  # 停车位状态(0:空闲, 1:占用)

# KNN分类器
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X, y)

# 停车位状态预测
parking_slot = np.array([[9]])  # 新停车位
predicted_status = model.predict(parking_slot)
print(predicted_status)

机器学习与智能交通的融合应用

实时交通数据分析

实时交通数据分析是智能交通系统的基础。通过对实时交通数据的采集、处理和分析,可以提供准确的交通信息,为交通管理和决策提供支持。

数据预处理

在实时交通数据分析中,数据预处理是关键的一步。通过对原始数据进行清洗、转换和特征工程,可以提高模型的准确性和稳定性。

import pandas as pd
from sklearn.preprocessing import StandardScaler

# 示例交通数据
data = {
    'timestamp': ['2023-01-01 08:00', '2023-01-01 08:05', '2023-01-01 08:10', '2023-01-01 08:15'],
    'traffic_volume': [100, 120, 130, 110],
    'speed': [60, 55, 50, 65]
}

df = pd.DataFrame(data)

# 数据预处理
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['hour'] = df['timestamp'].dt.hour
df['minute'] = df['timestamp'].dt.minute

features = df[['hour', 'minute', 'speed']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

print(scaled_features)
特征工程

特征工程是从原始数据中提取有用特征的过程。在交通数据分析中,常见的特征包括时间特征、交通流量特征和环境特征等。

# 示例特征工程
df['traffic_density'] = df['traffic_volume'] / df['speed']
print(df[['hour', 'minute', 'traffic_density']])

交通流量预测与优化

在智能交通系统中,交通流量预测与优化是核心环节。通过训练和评估模型,可以实现交通流量的准确预测和优化管理。

模型训练

在交通流量预测中,常用的模型训练方法包括时间序列分析、回归模型和深度学习等。

from statsmodels.tsa.arima_model import ARIMA

# 示例时间序列数据
traffic_volume = df['traffic_volume'].values

# 时间序列模型训练
model = ARIMA(traffic_volume, order=(1, 1, 1))
model_fit = model.fit(disp=False)

# 模型预测
predictions = model_fit.predict(len(traffic_volume), len(traffic_volume)+3, typ='levels')
print(predictions)

在这里插入图片描述

模型评估

模型评估是验证模型性能的重要步骤。常见的评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# 模型评估
rmse = mean_squared_error(y_test

, predictions, squared=False)
mae = mean_absolute_error(y_test, predictions)
r2 = r2_score(y_test, predictions)

print(f'RMSE: {rmse}, MAE: {mae}, R²: {r2}')

智能信号控制与优化

智能信号控制是通过机器学习和优化算法,动态调整交通信号灯的时长和顺序,以提高交通流量和减少等待时间。

强化学习应用

强化学习是一种在智能信号控制中广泛应用的技术。通过与环境交互,强化学习算法能够学习最优的信号控制策略。

import numpy as np
import gym
from stable_baselines3 import PPO

# 创建交通信号控制环境
env = gym.make('TrafficSignal-v0')

# 强化学习模型训练
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)

# 模型评估
obs = env.reset()
for _ in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, done, info = env.step(action)
    if done:
        obs = env.reset()

env.close()

智能停车管理与优化

智能停车管理通过传感器和机器学习算法,实时监测停车位的使用情况,指导车辆快速找到停车位,提高停车效率。

深度学习应用

深度学习在智能停车管理中具有广泛的应用。通过卷积神经网络(CNN),可以实现停车位状态的高精度检测和预测。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 示例数据预处理
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)

# 定义卷积神经网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 3)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 6 * 6, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 6 * 6)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')
            running_loss = 0.0

print('Finished Training')

在这里插入图片描述

性能优化

模型压缩与优化

模型压缩是通过减少模型参数量和计算量,提高模型运行效率的技术。常见的方法包括权重剪枝、量化和知识蒸馏等。

# 示例权重剪枝
import torch
import torch.nn.utils.prune as prune

model = CNN()
parameters_to_prune = [(module, 'weight') for module in model.modules() if isinstance(module, nn.Conv2d)]

for module, param in parameters_to_prune:
    prune.l1_unstructured(module, name=param, amount=0.2)

# Remove pruning reparameterization to enable inference
for module, param in parameters_to_prune:
    prune.remove(module, param)

分布式训练

分布式训练是通过多节点并行计算,加速大规模数据集和复杂模型训练的技术。常见的方法包括数据并行和模型并行。

# 示例数据并行
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group(backend='nccl')
model = CNN().cuda()
ddp_model = DDP(model)
optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)

for epoch in range(10):
    for inputs, labels in trainloader:
        inputs, labels = inputs.cuda(), labels.cuda()
        optimizer.zero_grad()
        outputs = ddp_model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

高效推理

高效推理是通过优化推理过程,提高模型响应速度的技术。常见的方法包括模型裁剪、缓存机制和专用硬件。

# 示例缓存机制
import torch
import torch.nn as nn

class CachedModel(nn.Module):
    def __init__(self, model):
        super(CachedModel, self).__init__()
        self.model = model
        self.cache = {}

    def forward(self, x):
        x_tuple = tuple(x.view(-1).tolist())
        if x_tuple in self.cache:
            return self.cache[x_tuple]
        output = self.model(x)
        self.cache[x_tuple] = output
        return output

model = CNN()
cached_model = CachedModel(model)

input_tensor = torch.randn(1, 3, 32, 32)
output = cached_model(input_tensor)
print(output)

在这里插入图片描述

案例研究

谷歌的智能交通管理系统

谷歌通过其智能交通管理系统,利用机器学习技术实时分析和预测交通流量,优化交通信号控制,缓解交通拥堵。

推荐算法

谷歌的智能交通管理系统采用了一系列先进的推荐算法,包括时间序列分析、深度学习和强化学习。通过不断优化算法,谷歌的智能交通管理系统能够提供高质量和智能化的交通管理解决方案。

from statsmodels.tsa.arima_model import ARIMA

# 示例时间序列数据
traffic_volume = df['traffic_volume'].values

# 时间序列模型训练
model = ARIMA(traffic_volume, order=(1, 1, 1))
model_fit = model.fit(disp=False)

# 模型预测
predictions = model_fit.predict(len(traffic_volume), len(traffic_volume)+3, typ='levels')
print(predictions)
个性化推荐

谷歌的智能交通管理系统通过分析实时交通数据,向交通管理部门提供个性化的交通管理建议。例如,当某一地区出现交通拥堵时,系统会根据历史数据和实时数据,推荐最佳的交通信号控制策略,缓解交通压力。

# 示例个性化推荐
def personalized_traffic_recommendation(location_id, traffic_data, model):
    location_data = traffic_data[traffic_data['location_id'] == location_id]
    predictions = model.predict(location_data)
    return predictions

location_id = 1
recommendations = personalized_traffic_recommendation(location_id, df, model_fit)
print(f'Recommendations for location {location_id}: {recommendations}')

特斯拉的智能驾驶系统

特斯拉通过其智能驾驶系统,利用机器学习和深度学习技术,实现自动驾驶和智能交通管理,提高驾驶安全性和用户体验。

自动驾驶算法

特斯拉的智能驾驶系统采用了一系列先进的自动驾驶算法,包括卷积神经网络、强化学习和多传感器融合。通过不断优化算法,特斯拉的智能驾驶系统能够提供高质量和智能化的自动驾驶解决方案。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 示例数据预处理
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)

# 定义卷积神经网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 3)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 6 * 6, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self

.conv2(x)))
        x = x.view(-1, 16 * 6 * 6)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:
            print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')
            running_loss = 0.0

print('Finished Training')
智能驾驶优化

特斯拉的智能驾驶系统通过实时分析和优化驾驶数据,提高驾驶安全性和用户体验。例如,当系统检测到潜在的危险驾驶行为时,会自动采取避让措施,确保驾驶安全。

# 示例智能驾驶优化
def driving_behavior_optimization(driving_data, model):
    predictions = model.predict(driving_data)
    optimized_behavior = predictions * 0.9  # 假设的优化系数
    return optimized_behavior

driving_data = np.array([60, 55, 50, 65])  # 示例驾驶数据
optimized_behavior = driving_behavior_optimization(driving_data, model_fit)
print(f'Optimized driving behavior: {optimized_behavior}')

在这里插入图片描述

未来展望

跨领域应用

随着智能交通技术的不断发展和优化,其应用领域将进一步拓展。未来,智能交通将在医疗、金融、教育、旅游等领域发挥更大的作用,为各行各业带来深远的影响和变革。

智能化系统

未来的智能化系统将更加依赖于智能交通技术的支持。通过将智能交通技术应用于智能制造、智能交通和智慧城市等领域,可以实现更加高效、智能和自动化的系统,提高生产效率和生活质量。

人工智能伦理

随着智能交通技术的广泛应用,人工智能伦理问题将变得更加重要。如何确保智能交通系统的公平性、透明性和可解释性,如何保护用户隐私,如何防止智能交通技术被滥用,将是未来需要重点关注的问题。

技术创新

未来,机器学习和智能交通领域将继续涌现出新的技术创新。新型神经网络架构、更加高效的训练算法、更智能的优化技术等,将推动智能交通技术的性能进一步提升,开创更多的应用场景和可能性。

结论

机器学习与智能交通的融合应用在智慧城市中展现了巨大的潜力和前景。通过对机器学习和智能交通技术的深入理解和研究,结合实际应用中的需求,开发者可以构建出高性能、智能化的交通管理系统,实现交通流量预测、交通拥堵管理、智能信号控制等功能。在实际应用中,通过模型压缩、分布式训练和高效推理等性能优化技术,可以进一步提升智能交通系统的应用效率和性能。未来,随着技术的不断创新和发展,机器学习与智能交通的融合应用将为智慧城市建设带来更多的机遇和挑战。希望本文能够为开发者提供有价值的参考和指导,推动机器学习与智能交通在智慧城市中的持续发展和应用。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/687040.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql中事务的简介

大家好。我们在日常开发过程中肯定都或多或少的用到过事务,而且在面试时,数据库的事务也是必问内容之一。今天我们就来说说mysql的事务。 为了方便我们下面内容的讲解,我们也先建立一个讲事务必用的表–account表,并在表中插入两…

2024上半年主播又买了啥好东西? | 老高居然买了仨手机当望远镜用!

点击文末“阅读原文”即可参与节目互动 剪辑、音频 / 朱峰 运营 / SandLiu 卷圈 监制 / 姝琦 封面 / 姝琦Midjourney 产品统筹 / bobo 场地支持 / (新)声湃轩北京录音间 本期节目绝无广告,如有需要,我们还可以提供购买记录 …

Qt 简易Word

Ui界面如下: 查找和替换界面: 具体代码: GitHub : 简易Word Gitee : 简易Word

el-table合计行前置在首行,自定义合计行方法

背景 el-table原生合计行是在标签内增加show-summary属性,在表尾实现设计合计,且只对表格当前页面显示的列数据进行合计。element-UI效果如下图所示。 现要求在首行显示合计行,并自定义合计逻辑实现如下效果。 图示表格中,成本…

正宇软件助力青岛打造智慧政协平台,引领新时代政协工作创新

在当前数字化、智能化浪潮的推动下,青岛市政协紧跟时代步伐,以“百舸争流奋楫先”的精神,不断开拓创新,推动政协工作高质量发展。5月30日,人民政协报报道了青岛市政协在推动高质量发展、加强思想政治引领、凝聚合作共识…

李学龙 :涉水视觉

源自:电子学报 作者:李学龙 注:若出现无法显示完全的情况,可搜索“人工智能技术与咨询”查看完整文章 摘 要 地球表面有约71%的面积被江河湖海等水体覆盖,陆地上的成像也会受到云雪雨雾等水体影响,但是…

C++三大特性之继承,详细介绍

阿尼亚全程陪伴大家学习~ 前言 每个程序员在开发新系统时,都希望能够利用已有的软件资源,以缩短开发周期,提高开发效率。 为了提高软件的可重用性(reusability),C提供了类的继承机制。 1.继承的概念 继承: 指在现有…

软件项目建设方案编制参考模板(Word原件)

1 引言 1.1 编写目的 1.2 项目概述 1.3 名词解释 2 项目背景 3 业务分析 3.1 业务需求 3.2 业务需求分析与解决思路 3.3 数据需求分析【可选】 4 项目建设总体规划【可选】 4.1 系统定位【可选】 4.2 系统建设规划 5 建设目标 5.1 总体目标 5.2 分阶段目标【可选】 5.2.1 业务目…

迅为RK3562开发板ARM四核A53核心板瑞芯微国产人工智能Linux安卓

iTOP-3562开发板采用瑞芯微RK3562处理器,内部集成了四核A53Mali G52架构,主频2GHZ,内置1TOPSNPU算力,RK809动态调频。支持OpenGLES1.1/2.0/3.2、0penCL2.0、Vulkan 1.1内嵌高性能2D加速硬件。 内置独立NPU, 算力达 1TOPS,可用于轻…

硬件I2C读写MPU6050

硬件I2C读写MPU6050 SCL接PB10,SDA接PB11,但是硬件I2C引脚不可以任意指定。 查询引脚定义表,来规划引脚。但由于PB6,7,8,9被OLEDz占用,不方便接线了。 可以使用I2C2引脚,但必须是SCL对应PB10,SDA对应PB11,…

嵌入式Linux系统编程 — 2.3 标准I/O库:格式化I/O

目录 1 格式化I/O简介 2 格式化输出 2.1 格式化输出函数简介 2.2 格式控制字符串 format 2.3 示例程序 3 格式化输入 3.1 格式化输入简介 3.2 格式控制字符串 format 3.3 示例程序 1 格式化I/O简介 在先前示例代码中,经常使用库函数 printf() 来输出程序中…

数据分析中的统计学基础及Python具体实现【数据分析】

各位大佬好 ,这里是阿川的博客,祝您变得更强 个人主页:在线OJ的阿川 大佬的支持和鼓励,将是我成长路上最大的动力 阿川水平有限,如有错误,欢迎大佬指正 Python 初阶 Python–语言基础与由来介绍 Python–…

python的line[:-1]和line[-1]

line[:-1]其实就是去除了这行文本的最后一个字符(换行符)后剩下的部分。 line = "abcde" line[:-1] 结果为:abcd line = "abcde" line[::-1] 结果为:edcba 示例3 [m : ] 代表列表中的第m+1项到最后一项 [ : n] 代表列表中的第一项到第n项 [-1] 代…

基于jeecgboot-vue3的Flowable流程-已办任务(一)

因为这个项目license问题无法开源,更多技术支持与服务请加入我的知识星球。 1、api接口部分 import { defHttp } from //utils/http/axios;enum Api {flowRecord /flowable/task/flowRecord,finishedListNew /flowable/task/finishedListNew,revokeProcess /flo…

2024年自然语言处理科学与信息检索技术国际会议(ICNLPSIRT 2024)

2024年自然语言处理科学与信息检索技术国际会议(ICNLPSIRT 2024) 2024 International Conference on Natural Language Processing Science and Information Retrieval Technology (ICNLPSIRT 2024) 会议地点:武汉,中国 网址:http://www.i…

【递归、搜索与回溯】搜索

搜索 1.计算布尔二叉树的值2.求根节点到叶节点数字之和3. 二叉树剪枝4.验证二叉搜索树5.二叉搜索树中第K小的元素6.二叉树的所有路径 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一…

深入ES6:解锁 JavaScript 类与继承的高级玩法

个人主页:学习前端的小z 个人专栏:JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结,欢迎大家在评论区交流讨论! ES5、ES6介绍 文章目录 💯Class🍟1 类的由来🍟2 co…

【文献阅读】LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

目录 1. motivation2. overall3. model3.1 low rank parametrized update matrices3.2 applying lora to transformer 4. limitation5. experiment6. 代码参考文献 1. motivation 常规的adaptation需要的微调成本过大现有方法的不足: Adapter Layers Introduce Inf…

视创云展元宇宙虚拟展厅:开启无限可能的沉浸式体验

随着科技的飞速发展,元宇宙虚拟展厅已逐步成为展览行业的新宠。视创云展元宇宙虚拟展厅以其独特的魅力,将参观者从传统展览场所的束缚中解放出来,为他们呈现了一个更为广阔、更为丰富的虚拟世界。通过数字虚拟展厅这一载体,参观者…

如何掌握 Java 正则表达式 的基本语法及在 Java 中的应用

正则表达式是一种用于匹配字符串的模式,在许多编程语言中广泛使用。Java 正则表达式提供了强大的文本处理能力,能够对字符串进行查找、替换、分割等操作。 一、正则表达式的基本语法 正则表达式由普通字符和特殊字符组成。普通字符包括字母、数字和标点…