【动态规划】--- 斐波那契数模型

 Welcome to 9ilk's Code World

       

(๑•́ ₃ •̀๑) 个人主页:       9ilk

(๑•́ ₃ •̀๑) 文章专栏:     算法Journey 


🏠 第N个泰波那契数模型

📌 题目解析

第N个泰波那契数

  • 题目要求的是泰波那契数,并非斐波那契数。

📌 算法原理

🎵 递归

函数设置:我们可以设置一个Taibo()函数,它能帮我们求出第n个泰波那契数。

函数返回值:题目保证answer <= 2^31 - 1,设置为int即可。

函数实现:根据定义求泰波那契数,我们需要前三个的泰波那契数相加,也就是Taibo(n-3) + Taibo(n-2) + Taibo(n-1)。

函数边界条件:对于n = 0,1,2是边界情况,我们可以提前处理。

参考代码:

class Solution {
public:
    long Taibo(int n)
    {
         if(n == 0)
         return 0;
         if(n == 1 || n == 2)
           return 1;
        return Taibo(n-1) + Taibo(n-2) + Taibo(n-3);
    }
    int tribonacci(int n)
    {
       return Taibo(n);
    }
};

🎵 记忆化搜索

对于解法一存在下面的问题:

我们发现在递归过程有的节点的值(比如上图的Taibo(3))在第3层就已经求得了,但是其他节点递归深入时又重新计算了,导致了不必要的时间和栈空间的开销(时间复杂度:O(3^n),空间复杂度:O(N))。本题虽然n最大为37,但其实栈空间和时间开销已经很大了,肯定会超时,我们可以采取记忆化搜索的方法:

1. 添加一个备忘录。

2. 每次递归返回时,将结果放到备忘录里面。

3. 在每次进入递归时,往备忘录里查询是否已经记录。

参考代码:

class Solution {
public:
    vector<int> memory;
    long Taibo(int n)
    {
        if (memory[n] != -1) //查看备忘录
            return memory[n];
        long ret = Taibo(n - 1) + Taibo(n - 2) + Taibo(n - 3);;
        memory[n] = ret; //存进备忘录
        return ret;
    }
    int tribonacci(int n)
    {
        memory.resize(38, -1); //创建一个备忘录
        memory[0] = 0;
        memory[1] = memory[2] = 1;
        return Taibo(n);
    }
};
  • 此时比之前大大避免了不必要的时间开销,时间复杂度是(n)。

🎵 动态规划

我们动态规划分为以下几步:

1. 状态表示:

  • 所谓状态表示其实是dp表里每个值代表的含义。

Q:状态从何而来?

  • 题目要求(比如本题已经告诉我们要求的是第n个泰波那契数)。
  • 经验 + 题目要求(后面我们再提)。
  • 分析问题的过程,发现重复的子问题。

因此,本题dp[i]的含义是第i个泰波那契数。

2. 状态转移方程:

状态转移方程回答的是dp[i]怎么得到的问题,一般我们从"最近一步"得到。

比如本题中,由定义知,在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2,不就是dp[i] = dp[i-1] + dp[i-2] + dp[i-3]吗?

3. 初始化:

初始化保证我们填表的时候不发生越界!

当遇到n=2时,此时n-3=-1很明显会会发生越界,因此对于边界情况,我们可以提前确定好边界位置在dp表中的值,即dp[0] = 0, dp[1] = dp[2] = 1。

4. 填表顺序:

动态规划需要状态的推导,只有确定好填表顺序,才能确保在填写当前状态时,所需要的状态已经计算过了。

本题很明显是从左往右填表

5. 返回值:

我们需要根据题目要求+状态表示来确定返回值。

注:dp[i]不一定就是我们所需的返回值,我们还需结合题目要求,本题dp[n]就是我们需要的返回值。

参考代码:

class Solution 
{
public:
   
    int tribonacci(int n)
     {
        //1.状态表示:dp[i]表示第N个泰波那切数
        vector<int> dp(38,-1);
        //2.初始化
         dp[0] = 0;
         dp[1] = dp[2] = 1;
        //3.填表
        for(int i = 3 ; i <= n ; i ++)
        {
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];//4.状态转移方程
        } 
        return dp[n];//5.返回值
     }
};

时间复杂度:O(N)

空间复杂度:O(1)

🎵 滚动数组

我们用vector容器来模拟dp表,但其实可以进一步优化,当求dp[i]只有前面的若干个状态,最前面的几个状态不需要浪费空间,此时可以使用滚动数组优化

我们可以利用四个变量来储存最近一次求泰波那契数的四个状态,不断进行滚动,最终求得目标结果!

注:对于赋值顺序,不能从右往左赋,即c = d,b = c, a = b因为d给c之后,c被d覆盖了,但是b想要的是c的,而c原本的值被覆盖了!

参考代码:

class Solution 
{
public:
    int tribonacci(int n)
    {
        //1.状态表示:dp[i]表示第N个泰波那切数
        if (n == 0) return 0;
        if (n == 1 || n == 2) return 1;
        int a = 0;
        int b = 1;
        int c = 1;
        int d = 0;
        //3.填表
        for (int i = 3; i <= n; i++)
        {
            d = a + b + c;;//状态转移方程
            a = b;
            b = c;
            c = d;
        }
        return d;
    }
};

🏠 三步问题

📌 题目解析

三步问题

📌 算法原理

1. 状态表示(经验 + 题目要求):

  • 状态表示:dp[i]表示到达i位置时,一共有多少种方法。

2. 状态转移方程:

我们从i位置的状态,最近的一步来划分问题,由于小孩一次可以上1阶,2阶,3阶:

  • 从i-1位置上来,此时dp[i] += dp[i-1]。
  • 从i-2位置上来,此时dp[i] += dp[i-2]。
  • 从i-3位置上来,此时dp[i] += dp[i-3]。

因此状态转移方程:dp[i] = dp[i-1] + dp[i-2] + dp[i-3]

3. 初始化:

 对于第1,2,3级的台阶,取它们的最近状态可能会造成数组越界(比如i为2时,i-3得-1会越界),因此我们可以提前设置好它们的状态:dp[1] = 1 , dp[2] = 2,dp[3] = 4

4. 填表顺序:

由状态转移方程知,我们i位置的状态依赖于前几个位置的状态,因此我们填表顺序是从左往右填。

5.返回值:

我们要求的是上到第n阶楼梯的总方法,直接返回dp[n]即可,注意要对结果模1000000007

参考代码:

class Solution 
{
public:
    int waysToStep(int n)
    {
         if(n == 1 || n == 2) return n;
         if(n == 3) return 4;
         long a = 1; //dp[1]
         long b = 2; //dp[2] 
         long c = 4; //dp[3]
         long d = 0; 
         for(int i = 4 ; i <= n ; i ++) //空间优化
         {
            d = (a + b + c)%1000000007; //状态转移方程
            a = b;
            b = c;
            c = d;
         }      
         return d;
    }
};

🏠 最小花费爬楼梯

📌 题目解析

最小花费爬楼梯

  • 假设n为数组元素个数,则本题中楼梯顶部指的是dp[n],并非dp[n-1]。

📌 算法原理

🎵 解法一 (以i位置为结尾)

1. 状态表示:

  • dp[i]表示:到达 i 位置时,所需支付的最少费用。

2. 状态转移方程:

用i位置的最近一步(之前或之后的状态),推导出dp[i]的值。

  • 当到达i-1位置时,支付cost[i-1],走一步到达i位置 -> dp[i-1] + cost[i-1]。
  • 当到达i-2位置时,支付cost[i-2],走两步到达i位置 -> dp[i-2] + cost[i-2]。
  • 我们要么选择从i-1位置到i,要么选择从i-2位置到i,我们要的是最小花费,则选最小的即可。

因此状态转移方程:dp[i] = min(dp[i-1]+cost[i-1] , dp[i-2] + cost[i-2])。

3.初始化

我们需要保证填表的时候不越界,本题可以选择从下标为0或下标为1的位置开始爬楼梯,因此这两个位置最初的花费是0,即dp[0] = dp[1] = 0。

4. 填表顺序

根据我们的状态转移方程,我们需i位置之前的状态,因此填表顺序是从左往右填。

5. 返回值

返回达到楼梯顶部的最低花费,返回dp[n]即可。

参考代码:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        int n = cost.size();
        if(n == 1 || n == 0) 
          return  0;
        vector<int> dp(n+1);
        dp[0] = dp[1] = 0 ; //初始化
        for(int i = 2 ; i <= n ; i ++) 
        {
            dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }   //状态转移方程
        return dp[n]; //返回值
    }
};

🎵 解法二 (以i位置为起点)
 

1. 状态表示:

  • dp[i]表示:从i位置出发,所需支付的最少费用。

2. 状态转移方程:

用i位置的最近一步(之前或之后的状态),推导出dp[i]的值。

  • 支付cost[i], 往后走一步,从i+1的位置出发到终点 -> dp[i+1] + cost[i]
  • 支付cost[i], 往后走两步,从i+2的位置出发到终点 -> dp[i+2] + cost[i]
  • 我们从i位置要么选择走一步到终点,要么选择走两步到终点,我们要的是最小花费,则选最小的即可。

因此状态转移方程:dp[i] = min(dp[i+1] + cost[i] , dp[i+2] + cost[i])。

3.初始化

对于n-1位置和n-2位置作为出发点,此时他们走一步或两步就到顶部了,因此i+1和i+2会使他们越界,我们只需支付他们对应的cost即可,即dp[n-1] = cost[n-1] && dp[n-2] = cost[n-2]

4. 填表顺序

根据我们的状态转移方程,我们需i位置之后的状态,因此填表顺序是从右往左填。

5. 返回值

我们是从0或1位置为起点出发的,我们返回两者最小即可,即min(dp[0],dp[1])。

参考代码:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        int n = cost.size();
        vector<int> dp(n);
        dp[n-2] = cost[n-2] ;
        dp[n-1] = cost[n-1];
        for(int i = n-3 ; i >= 0 ; i--)
        {
            dp[i] = min(dp[i+1]+cost[i],dp[i+2]+cost[i]);
        } 
        return min(dp[1],dp[0]);
    }
};

🏠 解码方法

📌 题目解析

91. 解码方法 - 力扣(LeetCode)

  • 本题可能存在无法解码的字符串。
  • 字符串中可能包含前导0。

📌 算法原理

1.状态表示:

根据经验+题目要求,我们可以设置dp[i]的状态:字符串以i位置结尾时,解码方法的总数

2. 状态转移方程:

我们还是按照最近一步来划分问题,对于i位置的解码我们以下两种情况:

(1) s[i] 单独解码:

  • 解码成功('1' <= s[i] <= '9',‘0’无法参与解码),此时解码总方法等于前一个位置的解码方法总数,即dp[i-1]。 
  • 解码失败,此时为0

(2) s[i] 与 s[i-1]解码

  • 解码成功(0 <= b*10+a <= 26),时解码总方法等于第i-2个位结尾字符串的解码方法总数,即dp[i-2]。 
  • 解码失败,此时为0

因此状态转移方程为:dp[i] = dp[i-1] + dp[i-2]

3. 初始化:

(1) i = 0时,位于字符串的第一个字符,我们只需判断它单独解码情况是否成立,取值可能为0,1。

(2) i = 1时,位于字符串的第二个字符,首先要单独解码就得先判断第一个字符能否单独解码否则没意义,能单独解码则dp[1]++;再判断与s[0]是否能解码,能则dp[1]++。其可能取值为0,1,2。

4. 状态转移方程 :

根据状态转移方程,我们需要之前位置的状态,因此填表顺序是从左往右。

5. 返回值:

由题意得,最终需要的是以size-1为位置结尾的字符串的所有解码方法,因此返回dp[size-1]。

参考代码:

class Solution {
public:

    int numDecodings(string s)
    {
        int n = s.size();
        vector<int> dp(n);
        dp[0] = s[0] != '0';//初始化处理边界
        if(n == 1) return dp[0];
        if(s[0] != '0' && s[1] != '0') dp[1] += 1;//s[1]单独解码
        int t = (s[0]-'0')*10 + s[1] - '0'; 
        if(t >= 10 && t <= 26) dp[1] += 1 ;//s[1]与前一个位置解码
      
        for(int i = 2 ; i < n ; i ++)
        {
            //一个数编码
            if(s[i] != '0') dp[i] += dp[i-1];
            //两个数编码
            int t = (s[i-1]-'0')*10 + s[i] - '0'; 
            if(t >= 10 && t <= 26) dp[i] += 1;
        }
       return dp[n-1];
    }
};

🎵 优化(虚拟节点)

Q:我们发现这两段代码相似度较高,处理逻辑是一样的,能不能把边界情况放进循环里处理呢?

这里我们介绍一下虚拟节点

我们可以在原dp表基础上扩充一个位置,保证最后一个位置下标为n,这样在处理字符串中原来下标为0位置的字符时,它在新dp表的下标变为1,这样i-1就不会越界!但是同时要注意两个问题:

1. 虚拟节点里面的值,要保证后面的填表时正确的。(比如对于新dp表的0下标位置,我们要保证对于如果字符串第二个位置的字符能跟第一个字符解码,此时需要新dp表i-2位置的值,也就是dp[0],此时我们需要设置它为1,表示存在第二个字符和第二个字符共同解码这一种解码方法)

2. 下标的映射关系:我们新dp表下标在原来基础上+1,但是s[i]的size并没有变化!

class Solution
{
public:

int numDecodings(string s)
{
//优化
 int n=s.size();
 vector<int>dp(n + 1);
 dp[0]=1;//保证后面的填表是正确的
 dp[1]= s[1 - 1] != '0';
注意映射关系s[1-1]下标映射关系
  for(inti=2;i<=n;i++)
 {
   if(s[i-1]!='0')dp[i]+=dp[i-1];//处理单独编码的情况
   int =(s[i-2]-'0')*10+s[i-1]-'0';//第二种情况所对应的数
   if(t>=10 &&t<=26)dp[i]+=dp[i] += dp[i - 2];
 }
   return dp[n];
}

完。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957667.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

wps数据分析000002

目录 一、快速定位技巧 二、快速选中技巧 全选 选中部分区域 选中部分区域&#xff08;升级版&#xff09; 三、快速移动技巧 四、快速录入技巧 五、总结 一、快速定位技巧 ctrl→&#xff08;上下左右&#xff09;快速定位光标对准单元格的上下部分双击名称单元格中…

常用集合-数据结构-MySql

目录 java核心&#xff1a; 常用集合与数据结构: 单例集合: 双列集合: 线程安全的集合: ConcurrentHashMap集合: HashTable集合: CopyOnWriteArrayList集合: CopyOnWriteArraySet集合: ConcurrentLinkedQueue队列: ConcurrentSkipListMap和ConcurrentSkipListSet&…

PHP礼品兑换系统小程序

&#x1f381; 礼品兑换系统&#xff1a;革新企业礼品管理&#xff0c;专属神器来袭&#xff01; &#x1f4bb; 一款专为追求高效与个性化的现代企业量身打造的礼品兑换系统&#xff0c;它基于强大的ThinkPHP框架与前沿的Uniapp技术栈深度融合&#xff0c;不仅完美适配礼品卡…

NoETL | 数据虚拟化如何在数据不移动的情况下实现媲美物理移动的实时交付?

在我们之前的文章中&#xff0c;我们回顾了Denodo在逻辑数据仓库和逻辑数据湖场景中所使用的主要优化技术&#xff08;具体内容请参阅之前的文章&#xff09;。 数据架构 | 逻辑数据仓库与物理数据仓库性能对比_物理数仓、逻辑数仓-CSDN博客文章浏览阅读1.5k次&#xff0c;点赞…

前沿技术趋势洞察:2024年技术的崭新篇章与未来走向!

引言 时光飞逝&#xff0c;2024年已经来临&#xff0c;回顾过去一年&#xff0c;科技的迅猛进步简直让人目不暇接。 在人工智能&#xff08;AI&#xff09;越来越强大的今天&#xff0c;我们不再停留在幻想阶段&#xff0c;量子计算的雏形开始展示它的无穷潜力&#xff0c;Web …

2024年终总结-行到水穷处,坐看云起时

依然是——关于我 我&#xff0c;坐标山东青岛&#xff0c;一位无名的Java Coder&#xff0c;你可以叫我Debug.c亦或者种棵代码技术树。在此不过多赘述关于我&#xff0c;更多的关于我请移步我的2023年年终总结。 2023年终总结-轻舟已过万重山 2024年OKR完成情况 2023年年末…

SpringMVC (2)

目录 1. RequestMapping 注解介绍 2. RequestMapping 使用 3. RequestMapping与请求方式 3.1 RequestMapping 支持Get和Post类型的请求 3.2 RequestMapping 指定接收某种请求 3.3 GetMapping和PostMapping 4. 传参 4.1 通过查询字符串传参 4.2 在 Body 中传参 4.2.1 …

使用ssh推送项目到github

文章目录 1. 确保已生成 SSH 密钥2. 在 GitHub 上创建远程仓库3. 初始化本地项目4. 将本地项目与远程仓库关联5. 添加文件并提交补充&#xff1a;拉取远程修改&#xff08;可选&#xff09;6. 推送到 GitHub7. 完成总结 出现的问题解决方法&#xff1a;方法 1&#xff1a;允许合…

一文读懂 RocketMQ:从概念到架构与应用原理概述

文章目录 概述架构说明核心组件核心概念 namesvrproducer默认实现producer启动消息发送 broker-mq核心基本模型集群模型内部模型存储机制高可用 consumerpush类型push流程pull类型 概述 随着分布式技术在业内的快速应用&#xff0c;mq&#xff08;消息队列&#xff09;做为不可…

具身智能新突破!Physical Intelligence推出机器人动作tokenizer,训练提速5倍

具身智能&#xff0c;是人工智能&#xff08;AI&#xff09;行业的下一个浪潮。如何有效训练 Transformers 模型来控制具身机器人&#xff0c;是当前亟需要解决的难题&#xff0c;尤其是对于更复杂、需要精确和高频控制的精巧技能&#xff0c;现有的视觉-语言-动作&#xff08;…

通过idea创建的springmvc工程需要的配置

在创建的spring mvc工程中&#xff0c;使用idea开发之前需要配置文件包括porm.xml、web.xml、springmvc.xml 1、porm.xml 工程以来的spring库&#xff0c;主要包括spring-aop、spring-web、spring-webmvc&#xff0c;示例配置如下&#xff1a; <project xmlns"http:/…

【MySQL系列文章】Linux环境下安装部署MySQL

前言 本次安装部署主要针对Linux环境进行安装部署操作,系统位数64 getconf LONG_BIT 64MySQL版本&#xff1a;v5.7.38 一、下载MySQL MySQL下载地址&#xff1a;MySQL :: Download MySQL Community Server (Archived Versions) 二、上传MySQL压缩包到Linuxx环境&#xff0c…

【排查案例】无认证集群空白分区创建元凶排查记录

无认证集群空白分区创建元凶排查记录 前言正文SparkSQL Thrift审计通过edit查找操作抓包分析请求NodeManager日志追踪结论 后记 前言 今天分享一个最近在生产环境排查的空白分区的问题&#xff0c;先说业务感知&#xff0c;业务那边反馈本身这条业务链每个小时数据应该是3个分…

音频入门(一):音频基础知识与分类的基本流程

音频信号和图像信号在做分类时的基本流程类似&#xff0c;区别就在于预处理部分存在不同&#xff1b;本文简单介绍了下音频处理的方法&#xff0c;以及利用深度学习模型分类的基本流程。 目录 一、音频信号简介 1. 什么是音频信号 2. 音频信号长什么样 二、音频的深度学习分…

语义分割文献阅读-SegNet:一种用于图像分割的深度卷积编码器-解码器架构(1.13-1.19)

目录 摘要 Abstract 1 引言 2 SegNet架构 2.1 编码器网络 2.2 解码器网络 2.3 最大池化索引(Max-pooling Indices) 3 训练SegNet 3.1 加载预训练权重 3.2 构建MyDataset类 3.3 训练 4 测试 总结 摘要 本周阅读的论文题目是《SegNet&#xff1a;A Deep Convoluti…

深度学习核函数

一、核函数的基本概念 核函数在机器学习中具有重要应用价值&#xff0c;常用于支持向量机&#xff08;SVM&#xff09;等算法中。 核函数是面试中经常被考到的知识点&#xff0c;对于找工作和实际数据转换都有重要作用。 二、数据建模与核函数的作用 数据越多&#xff0c;可…

.Net Core微服务入门全纪录(四)——Ocelot-API网关(上)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…

2024年智慧消防一体化安全管控年度回顾与2025年预测

随着科技的飞速发展&#xff0c;智慧营区一体化安全管控在2024年取得了显著进展&#xff0c;同时也为2025年的发展奠定了坚实基础。 2024年年度回顾 政策支持力度持续加大&#xff1a;国家对消防安全的重视程度不断提高&#xff0c;出台了一系列涵盖技术创新、市场应用、人才培…

抖音小程序一键获取手机号

前端代码组件 <button v-if"!isFromOrderList"class"get-phone-btn" open-type"getPhoneNumber"getphonenumber"onGetPhoneNumber">一键获取</button>// 获取手机号回调onGetPhoneNumber(e) {var that this tt.login({f…

【线性代数】列主元法求矩阵的逆

列主元方法是一种用于求解矩阵逆的数值方法&#xff0c;特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵&#xff0c;然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵 A A A 的逆的步骤&#xff1a; [精确算法] 列主元高斯消元法 步骤 1&am…