【深度学习】安全帽检测,目标检测,yolov10算法,yolov10训练

文章目录

  • 一、数据集
  • 二、yolov10介绍
  • 三、数据voc转换为yolo
  • 四、训练
  • 五、验证
  • 六、数据、模型、训练后的所有文件

寻求帮助请看这里:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

一、数据集

安全帽佩戴检测
数据集:https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
基准模型:
在这里插入图片描述

二、yolov10介绍

听说过yolov10吗:https://www.jiqizhixin.com/articles/2024-05-28-7

论文:

https://arxiv.org/abs/2405.14458

代码:

https://github.com/THU-MIG/yolov10

三、数据voc转换为yolo

调整一下,整成这样:

VOC2028 # tree -L 1
.
├── images
├── labels
├── test.txt
├── train.txt
├── trainval.txt
└── val.txt

2 directories, 4 files

写为绝对路径:

# 定义需要处理的文件名列表
file_names = ['test.txt', 'train.txt', 'trainval.txt', 'val.txt']

for file_name in file_names:
    # 打开文件用于读取
    with open(file_name, 'r') as file:
        # 读取所有行
        lines = file.readlines()
    
    # 打开(或创建)另一个文件用于写入修改后的内容,这里使用新的文件名表示已修改
    new_file_name = 'modified_' + file_name
    with open(new_file_name, 'w') as new_file:
        # 遍历每一行并进行修改
        for line in lines:
            # 删除行尾的换行符,添加'.jpg''images/',然后再添加回换行符
            modified_line = '/ssd/xiedong/yolov10/VOC2028/images/' + line.strip() + '.jpg\n'
            # 将修改后的内容写入新文件
            new_file.write(modified_line)

print("所有文件处理完成。")

转yolo txt:

import traceback
import xml.etree.ElementTree as ET
import os
import shutil
import random
import cv2
import numpy as np
from tqdm import tqdm


def convert_annotation_to_list(xml_filepath, size_width, size_height, classes):
    in_file = open(xml_filepath, encoding='UTF-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    # size = root.find('size')
    # size_width = int(size.find('width').text)
    # size_height = int(size.find('height').text)
    yolo_annotations = []
    # if size_width == 0 or size_height == 0:
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes:
            classes.append(cls)
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = [float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text)]

        # 标注越界修正
        if b[1] > size_width:
            b[1] = size_width
        if b[3] > size_height:
            b[3] = size_height

        txt_data = [((b[0] + b[1]) / 2.0) / size_width, ((b[2] + b[3]) / 2.0) / size_height,
                    (b[1] - b[0]) / size_width, (b[3] - b[2]) / size_height]
        # 标注越界修正
        if txt_data[0] > 1:
            txt_data[0] = 1
        if txt_data[1] > 1:
            txt_data[1] = 1
        if txt_data[2] > 1:
            txt_data[2] = 1
        if txt_data[3] > 1:
            txt_data[3] = 1
        yolo_annotations.append(f"{cls_id} {' '.join([str(round(a, 6)) for a in txt_data])}")

    in_file.close()
    return yolo_annotations


def main():
    classes = []

    root = r"/ssd/xiedong/yolov10/VOC2028"
    img_path_1 = os.path.join(root, "images")
    xml_path_1 = os.path.join(root, "labels")

    dst_yolo_root_txt = xml_path_1

    index = 0
    img_path_1_files = os.listdir(img_path_1)
    xml_path_1_files = os.listdir(xml_path_1)
    for img_id in tqdm(img_path_1_files):
        # 右边的.之前的部分
        xml_id = img_id.split(".")[0] + ".xml"
        if xml_id in xml_path_1_files:
            try:
                img = cv2.imdecode(np.fromfile(os.path.join(img_path_1, img_id), dtype=np.uint8), 1)  # img是矩阵
                new_txt_name = img_id.split(".")[0] + ".txt"
                yolo_annotations = convert_annotation_to_list(os.path.join(xml_path_1, img_id.split(".")[0] + ".xml"),
                                                              img.shape[1],
                                                              img.shape[0],
                                                              classes)
                with open(os.path.join(dst_yolo_root_txt, new_txt_name), 'w') as f:
                    f.write('\n'.join(yolo_annotations))
            except:
                traceback.print_exc()

    # classes
    print(f"我已经完成转换 {classes}")


if __name__ == '__main__':
    main()

vim voc2028x.yaml

train: /ssd/xiedong/yolov10/VOC2028/modified_train.txt
val: /ssd/xiedong/yolov10/VOC2028/modified_val.txt
test: /ssd/xiedong/yolov10/VOC2028/modified_test.txt

# Classes
names:
  0: hat
  1: person

四、训练

环境:

git clone https://github.com/THU-MIG/yolov10.git
cd yolov10
conda create -n yolov10 python=3.9 -y
conda activate yolov10
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple some-package


训练

yolo detect train data="/ssd/xiedong/yolov10/voc2028x.yaml" model=yolov10s.yaml epochs=200 batch=64 imgsz=640 device=1,3

在这里插入图片描述

训练启动后:

在这里插入图片描述
训练完成后:

在这里插入图片描述

五、验证

yolo val model="/ssd/xiedong/yolov10/runs/detect/train2/weights/best.pt" data="/ssd/xiedong/yolov10/voc2028x.yaml" batch=32 imgsz=640 device=1,3

在这里插入图片描述
map50平均达到0.94,已超出基准很多了。

预测:

yolo predict model=yolov10n/s/m/b/l/x.pt

导出:

# End-to-End ONNX
yolo export model=yolov10n/s/m/b/l/x.pt format=onnx opset=13 simplify
# Predict with ONNX
yolo predict model=yolov10n/s/m/b/l/x.onnx

# End-to-End TensorRT
yolo export model=yolov10n/s/m/b/l/x.pt format=engine half=True simplify opset=13 workspace=16
# Or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine

demo:

wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
python app.py
# Please visit http://127.0.0.1:7860

在这里插入图片描述

在这里插入图片描述

六、数据、模型、训练后的所有文件

yolov10训练安全帽目标监测全部东西,下载看这里:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/666738.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

匿名函数(lambda)

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 匿名函数是指没有名字的函数,应用在需要一个函数,但是又不想费神去命名这个函数的场合。通常情况下,这样的函数只…

VRTK4.0学习——(二)

手柄绑定以及显示 1.导入CameraRigs.UnityXRPluginFramework 和 CameraRigs.TrackedAlias 预设,将CameraRigs.UnityXRPluginFramework拖入CameraRigs.TrackedAlias的Elements中即可,运行软件后即可看到手柄了 注:如果无法看到手柄&#xff…

鹤城杯 2021 流量分析

看分组也知道考http流量 是布尔盲注 过滤器筛选http流量 将流量包过滤分离 http tshark -r timu.pcapng -Y "http" -T json > 1.json这个时候取 http.request.uri 进一步分离 http.request.uri字段是我们需要的数据 tshark -r timu.pcapng -Y "http&quo…

fmql之CAN调试

刚刚把zynq的CAN调成功。那么现在就要把程序移植到fmql了。 老规矩,Procise导入vivado的.bd和.xci文件。 Procise下create block也可以,但是不能自动约束引脚,只能手动写代码。 PeripheralTest CanExample中用到了CAN0和CAN1:…

重生之 SpringBoot3 入门保姆级学习(11、日志的进阶使用)

重生之 SpringBoot3 入门保姆级学习(11、日志的进阶使用) 3.2.4 文件输出3.2.5 日志文档的归档与切割 3.2.4 文件输出 配置 application.properties # 日志文件名 如果不写路径默认就是在项目根路径建立 demo.log 文件 推荐写法 D:\\demo.log 路径 文…

虚拟机Ubuntu 22.04上搭建GitLab操作步骤

GitLab是仓库管理系统,使用Git作为代码管理工具。GitLab提供了多个版本,包括社区版(Community Edition)和企业版(Enterprise Edition)。实际应用场景中要求CPU最小4核、内存最小8GB,非虚拟环境。 以下是在虚拟机中安装社区版步骤:…

R语言ggplot2包绘制高端堆积柱状图

数据和代码获取:请查看主页个人信息!!! 关键词“高端堆积柱状图” 大家好,今天我将介绍如何使用ggplot2包绘制高端堆积柱状图。 本次绘图灵感来源于下面这篇文章,之所以复现这张图,有这么几个原…

查看docker中各个容器所占的资源

要查看Docker中的每个容器占用的资源,可以使用docker stats命令。这个命令提供了容器的实时资源使用统计,包括内存使用情况。以下是如何使用docker stats命令的示例: docker stats --format "table {{.Name}}\t{{.CPUPerc}}\t{{.MemUsa…

Nginx企业级负载均衡:技术详解系列(14)—— 账户认证功能

你好,我是赵兴晨,97年文科程序员。 你有没有听说过Nginx的账户认证功能?这可不只是一个技术问题,它关系到我们上网时的安全和便利。就像家里需要一把钥匙才能进们一样,Nginx的账户认证功能就是确保有只有授权的人才能…

Linux-在centos7中为普通用户配置sudo认证

目录 前言一、sudo是什么?二、配置sudo三、测试 前言 本篇文章介绍如何在centos7中为普通用户配置sudo认证 一、sudo是什么? sudo是一个命令,其作用是为普通用户以临时管理员(root)的身份去执行一条命令。 例如&…

ConvNeXt(CVPR 2022)论文解读

paper:A ConvNet for the 2020s official implementation:https://github.com/facebookresearch/ConvNeXt third-party implementation:https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/convnext.py 背景 在…

面试杂谈k8s

其实看我之前的博客,k8s刚有点苗头的时候我就研究过,然后工作的时候间接接触 也自己玩过 但是用的不多就忘记了,正苦于不知道写什么,水一篇 用来面试应该是够了 支持云应用开发、运行与运维一体化的云应用平台软件应运而生 k8s核…

JVM 指针压缩

运用java内存对齐填充,对java内存进行8字节划分,java对象指针映射到每个划分区域上,使得4个字节(32位)表示2^32个地址,从而使4个字节指针映射32G内存空间。 1.为什么进行指针压缩: jvm从32位变…

【DSP】xDAIS算法标准

1. 简介 在安装DSP开发支持包时,有名为 “xdais_7_21_01_07”文件夹。xDAIS全称: TMS320 DSP Algorithm Standard(算法标准)。39条规则,15条指南。参考文档。参考文章。 2. 三个层次 3.接口 XDAIS Digital Media。编解码引擎。VISA(Video&…

18.Redis之哨兵

1.哨兵机制的介绍 通过自动化的手段,来解决主节点挂了的问题~~ 哨兵机制, 是通过独立的 进程 来体现的.和之前 redis-server 是不同的进程!! redis-sentine| 不负责存储数据,只是对其他的 redis-server 进程起到监控的效果~~ 通常哨兵节点,也会搞一个集合~~(多个哨兵节点构成的…

汽车MCU虚拟化--对中断虚拟化的思考(2)

目录 1.引入 2.TC4xx如何实现中断虚拟化 3.小结 1.引入 其实不管内核怎么变,针对中断虚拟化无非就是上面两种,要么透传给VM,要么由Hypervisor统一分发。汽车MCU虚拟化--对中断虚拟化的思考(1)-CSDN博客 那么,作为车规MCU龙头…

基于ES安装IK分词插件

前言 IK分词器插件是为Elasticsearch设计的中文分词插件,由Elasticsearch的官方团队之外的开发者medcl开发。它主要针对中文文本的分词需求,提供了较为准确的中文分词能力。以下是IK分词器插件的一些特点: 智能分词:IK分词器采用基…

thinkphp6 自定义的查询构造器类

前景需求&#xff1a;在查询的 时候我们经常会有一些通用的&#xff0c;查询条件&#xff0c;但是又不想每次都填写一遍条件&#xff0c;这个时候就需要重写查询类&#xff08;Query&#xff09; 我目前使用的thinkphp版本是6.1 首先自定义CustomQuery类继承于Query <?p…

戴尔科技:一盆冷水浇醒了AIPC

这年头&#xff0c;只要沾上英伟达的公司&#xff0c;不论美股还是大A,都跟着鸡犬升天几轮过&#xff0c;但昨晚英伟达蒸发1064亿美元&#xff0c; 跟着遭罪的也不少&#xff0c;有没有一夜惊魂梦醒的感觉&#xff1f; 今天我们来说说——戴尔科技。 昨晚戴尔科技大跌5.18%&a…

R语言ggplot2包绘制网络地图

重要提示&#xff1a;数据和代码获取&#xff1a;请查看主页个人信息&#xff01;&#xff01;&#xff01; 载入R包 rm(listls()) pacman::p_load(tidyverse,assertthat,igraph,purrr,ggraph,ggmap) 网络节点和边数据 nodes <- read.csv(nodes.csv, row.names 1) edges…