算法与数据结构-跳表

文章目录

  • 什么是跳表
  • 跳表的时间复杂度
  • 跳表的空间复杂度
  • 如何高效的插入和删除
  • 跳表索引动态更新
  • 代码示例


什么是跳表

对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)。
在这里插入图片描述
那怎么来提高查找效率呢?如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一些呢?每两个结点提取一个结点到上一级,我们把抽出来的那一级叫做索引或索引层。你可以看我画的图。图中的 down 表示 down 指针,指向下一级结点。
在这里插入图片描述
如果我们现在要查找某个结点,比如 16。我们可以先在索引层遍历,当遍历到索引层中值为 13 的结点时,我们发现下一个结点是 17,那要查找的结点 16 肯定就在这两个结点之间。然后我们通过索引层结点的 down 指针,下降到原始链表这一层,继续遍历。这个时候,我们只需要再遍历 2 个结点,就可以找到值等于 16 的这个结点了。这样,原来如果要查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

从这个例子里,我们看出,加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。那如果我们再加一级索引呢?效率会不会提升更多呢?

跟前面建立第一级索引的方式相似,我们在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。现在我们再来查找 16,只需要遍历 6 个结点了,需要遍历的结点数量又减少了。
在这里插入图片描述
这种链表加多级索引的结构,就是跳表。

跳表的时间复杂度

按照我们刚才讲的,每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是 n/2,第二级索引的结点个数大约就是 n/4,第三级索引的结点个数大约就是 n/8,依次类推,也就是说,第 k 级索引的结点个数是第 k-1 级索引的结点个数的 1/2,那第 k 级索引结点的个数就是 n/(2k)。

假设索引有 h 级,最高级的索引有 2 个结点。通过上面的公式,我们可以得到 n/(2h)=2,从而求得 h=log2n-1。如果包含原始链表这一层,整个跳表的高度就是 log2n。我们在跳表中查询某个数据的时候,如果每一层都要遍历 m 个结点,那在跳表中查询一个数据的时间复杂度就是 O(m*logn)。

那这个 m 的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历 3 个结点,也就是说 m=3,为什么是 3 呢?我来解释一下。

假设我们要查找的数据是 x,在第 k 级索引中,我们遍历到 y 结点之后,发现 x 大于 y,小于后面的结点 z,所以我们通过 y 的 down 指针,从第 k 级索引下降到第 k-1 级索引。在第 k-1 级索引中,y 和 z 之间只有 3 个结点(包含 y 和 z),所以,我们在 K-1 级索引中最多只需要遍历 3 个结点,依次类推,每一级索引都最多只需要遍历 3 个结点。

在这里插入图片描述

通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找.

跳表的空间复杂度

通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找

在这里插入图片描述
这几级索引的结点总和就是 n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是 O(n)。也就是说,如果将包含 n 个结点的单链表构造成跳表,我们需要额外再用接近 n 个结点的存储空间。

如何高效的插入和删除

我们知道,在单链表中,一旦定位好要插入的位置,插入结点的时间复杂度是很低的,就是 O(1)。但是,这里为了保证原始链表中数据的有序性,我们需要先找到要插入的位置,这个查找操作就会比较耗时。

对于纯粹的单链表,需要遍历每个结点,来找到插入的位置。但是,对于跳表来说,我们讲过查找某个结点的时间复杂度是 O(logn),所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是 O(logn)。我画了一张图,你可以很清晰地看到插入的过程。

在这里插入图片描述

我们再看下删除操作。 如果这个结点在索引中也有出现,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到要删除结点的前驱结点,然后通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点。当然,如果我们用的是双向链表,就不需要考虑这个问题了。

跳表索引动态更新

当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。
在这里插入图片描述
作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。

当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?

我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。

在这里插入图片描述
随机函数的选择很有讲究,从概率上来讲,能够保证跳表的索引大小和数据大小平衡性,不至于性能过度退化。

代码示例

public class SkipList {

    private static final float SKIPLIST_P = 0.5f;
    private static final int MAX_LEVEL = 16;

    private int levelCount = 1;

    private Node head = new Node();  // 带头链表

    public Node find(int value) {
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            return p.forwards[0];
        } else {
            return null;
        }
    }

    public void insert(int value) {
        // 随机索引层数
        int level = randomLevel();

        // 定义新节点
        Node newNode = new Node();
        newNode.data = value;

        //
        Node update[] = new Node[level];
        for (int i = 0; i < level; ++i) {
            update[i] = head;
        }

        // record every level largest value which smaller than insert value in update[]
        Node p = head;
        for (int i = level - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;// use update save node in search path
        }

        // in search path node next node become new node forwords(next)
        for (int i = 0; i < level; ++i) {
            newNode.forwards[i] = update[i].forwards[i];
            update[i].forwards[i] = newNode;
        }

        // update node hight
        if (levelCount < level) levelCount = level;
    }

    public void delete(int value) {
        Node[] update = new Node[levelCount];
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            for (int i = levelCount - 1; i >= 0; --i) {
                if (update[i].forwards[i] != null && update[i].forwards[i].data == value) {
                    update[i].forwards[i] = update[i].forwards[i].forwards[i];
                }
            }
        }

        while (levelCount > 1 && head.forwards[levelCount] == null) {
            levelCount--;
        }

    }

    // 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。
    // 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。
    // 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :
    //        50%的概率返回 1
    //        25%的概率返回 2
    //      12.5%的概率返回 3 ...
    private int randomLevel() {
        int level = 1;

        while (Math.random() < SKIPLIST_P && level < MAX_LEVEL)
            level += 1;
        return level;
    }

    public void printAll() {
        Node p = head;
        while (p.forwards[0] != null) {
            System.out.print(p.forwards[0] + " ");
            p = p.forwards[0];
        }
        System.out.println();
    }

    public class Node {
        private int data = -1;
        private Node forwards[] = new Node[MAX_LEVEL];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/66668.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

leetcode 746. 使用最小花费爬楼梯

2023.8.8 昨天爽玩一天&#xff0c;在家就是舒服。 今天继续刷动态规划题。 动态规划题最重要的就是搞清楚dp[i] 的定义&#xff0c;本题dp[i] 的含义是&#xff1a;到达第i层&#xff0c;所需的最小花费。 那么由于起始台阶可以是0或者1&#xff0c;那么dp[0]和dp[1]都初始化…

[保研/考研机试] KY30 进制转换-大整数转二进制 清华大学复试上机题 C++实现

描述 将一个长度最多为30位数字的十进制非负整数转换为二进制数输出。 输入描述&#xff1a; 多组数据&#xff0c;每行为一个长度不超过30位的十进制非负整数。 &#xff08;注意是10进制数字的个数可能有30个&#xff0c;而非30bits的整数&#xff09; 输出描述&#xff…

SolidUI社区-提示词链式思考(CoT)

背景 随着文本生成图像的语言模型兴起&#xff0c;SolidUI想帮人们快速构建可视化工具&#xff0c;可视化内容包括2D,3D,3D场景&#xff0c;从而快速构三维数据演示场景。SolidUI 是一个创新的项目&#xff0c;旨在将自然语言处理&#xff08;NLP&#xff09;与计算机图形学相…

C语言:打开调用堆栈

第一步&#xff1a;打断点 第二步&#xff1a;FnF5 第三步&#xff1a;按如图找到调用堆栈

Android模板设计模式之 - 构建整个应用的BaseActivity

1. 模式介绍 模式的定义 定义一个操作中的算法的框架&#xff0c;而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 模式的使用场景 1.多个子类有公有的方法&#xff0c;并且逻辑基本相同时。 2.重要、复杂的算法&#xff0c;可…

Java基础入门篇——Java变量类型的转换和运算符(七)

目录 一、变量类型 1.1自动类型转换&#xff08;隐式转换&#xff09; 1.2 强制类型转换&#xff08;显式转换&#xff09; 1.3类型转换的其他情况 二、运算符 2.1算术运算符 2.2比较运算符 2.3逻辑运算符 2.4位运算符 三、总结 在Java中&#xff0c;变量类型的转换…

ubuntu python虚拟环境venv搭配systemd服务实战

文章目录 参考文章目录结构步骤安装venv查看python版本创建虚拟环境激活虚拟环境运行我们程序看缺少哪些依赖库&#xff0c;依次安装它们接下来我们配置python程序启动脚本&#xff0c;脚本中启动python程序前需先激活虚拟环境配置.service文件然后执行部署脚本&#xff0c;成功…

考研算法第40天:众数 【模拟,简单题】

题目 本题收获 又是一道比较简单的模拟题&#xff0c;就不说解题思路了&#xff0c;说一下中间遇到的问题吧&#xff0c;就是说cin输入它是碰到空格就停止输入的&#xff0c;详细的看下面这篇博客对于cin提取输入流遇到空格的问题_while(cin) 空格_就是那个党伟的博客-CSDN博…

JVM 调优实例

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ JVM提供了多种垃圾回收器&#xff0c;可以根据应用程序的需求选择最适合的垃圾回收器。例如&#xff0c;如果应用程序需要更快的响应时间&#xff0c;可以选择并行垃圾回收…

Hello,SpringBoot!

一、回顾什么是Spring Spring是一个开源框架&#xff0c;2003 年兴起的一个轻量级的Java 开发框架&#xff0c;作者&#xff1a;Rod Johnson Spring是为了解决企业级应用开发的复杂性而创建的&#xff0c;简化开发。 Spring是如何简化Java开发的 为了降低Java开发的复杂性…

模仿火星科技 基于cesium+ 贴地测量+可编辑

当您进入Cesium的编辑贴地测量世界&#xff0c;下面是一个详细的操作过程&#xff0c;帮助您顺利使用这些功能&#xff1a; 1. 创建提示窗&#xff1a; 启动Cesium应用&#xff0c;地图场景将打开&#xff0c;欢迎您进入编辑模式。在屏幕的一角&#xff0c;一个友好的提示窗将…

【在一个升序数组中插入一个数仍升序输出】

在一个升序数组中插入一个数仍升序输出 题目举例&#xff1a; 有一个升序数组nums&#xff0c;给一个数字data&#xff0c;将data插入数组nums中仍旧保证nums升序&#xff0c;返回数组中有效元素个数。 比如&#xff1a;nums[100] {1, 2, 3, 5, 6, 7, 8, 9} size 8 data 4 …

LabVIEW开发高压配电设备振动信号特征提取与模式识别

LabVIEW开发高压配电设备振动信号特征提取与模式识别 矿用高压配电设备是井下供电系统中的关键设备之一&#xff0c;肩负着井下供配电和供电安全的双重任务&#xff0c;其工作状态直接影响着井下供电系统的安全性和可靠性。机械故障占配电总故障的70%。因此&#xff0c;机械故…

报错Uncaught (in promise) Error: Manifest request to...

在使用nuxt框架时&#xff0c;出现如下报错&#xff1a; 解决方案&#xff1a; 不要打开两个以上的开发者工具更换nuxt的端口号 参考资料&#xff1a;https://github.com/nuxt/nuxt.js/issues/6202

DP(状态机模型)

状态机模型和01背包问题的区别就在于&#xff0c;01背包中每个物品选或不选都是独立的&#xff0c; 不受前者约束不对后者产生影响&#xff0c;而状态机不一样。换成01那种状态之间的转化图来看的话,01背包中0和1的转化不受任何约束&#xff0c;可以说是有向完全图&#xff1b;…

浅析 C 语言的共用体、枚举和位域

前言 最近在尝试阅读一些系统库的源码&#xff0c;但是其中存在很多让我感到既熟悉又陌生的语法。经过资料查阅&#xff0c;发现是 C 语言中的共用体和位域。于是&#xff0c;趁着课本还没有扔掉&#xff0c;将一些相关的知识点记录在本文。 文章目录 前言共用体 (union)枚举…

理解 Python 的 for 循环

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 在本篇博客中&#xff0c;我们将讨论 Python 中 for 循环的原理。 我们将从一组基本例子和它的语法开始&#xff0c;还将讨论与 for 循环关联的 else 代码块的用处。 然后我们将介绍迭代对象、迭代器和迭代器协议&…

Android 14重要更新预览

Android 14重要更新预览 国际化 Android 14 在 Android 13 的基础上进一步扩展了按应用设定语言功能&#xff0c;提供了一些额外的功能&#xff1a; 自动生成应用的 localeConfig&#xff1a;从 Android Studio Giraffe Canary 7 和 AGP 8.1.0-alpha07 开始&#xff0c;您可以…

Java版企业电子招标采购系统源码Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis tbms

​ 功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查…

【人工智能前沿弄潮】—— SAM自动生成物体mask

SAM自动生成物体mask 由于SAM可以高效处理提示&#xff0c;可以通过在图像上抽样大量的提示来生成整个图像的mask。这种方法被用来生成数据集SA-1B。 类SamAutomaticMaskGenerator实现了这个功能。它通过在图像上的网格中对单点输入提示进行抽样&#xff0c;从每个提示中SAM可…