plotting.py 的版本不同,可以使用下列版本
reinforcement-learning/lib/plotting.py at master · dennybritz/reinforcement-learning · GitHubImplementation of Reinforcement Learning Algorithms. Python, OpenAI Gym, Tensorflow. Exercises and Solutions to accompany Sutton's Book and David Silver's course. - reinforcement-learning/lib/plotting.py at master · dennybritz/reinforcement-learninghttps://github.com/dennybritz/reinforcement-learning/blob/master/lib/plotting.py
import matplotlib
import numpy as np
import pandas as pd
from collections import namedtuple
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
EpisodeStats = namedtuple("Stats",["episode_lengths", "episode_rewards"])
def plot_cost_to_go_mountain_car(env, estimator, num_tiles=20):
x = np.linspace(env.observation_space.low[0], env.observation_space.high[0], num=num_tiles)
y = np.linspace(env.observation_space.low[1], env.observation_space.high[1], num=num_tiles)
X, Y = np.meshgrid(x, y)
Z = np.apply_along_axis(lambda _: -np.max(estimator.predict(_)), 2, np.dstack([X, Y]))
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0)
ax.set_xlabel('Position')
ax.set_ylabel('Velocity')
ax.set_zlabel('Value')
ax.set_title("Mountain \"Cost To Go\" Function")
fig.colorbar(surf)
plt.show()
def plot_value_function(V, title="Value Function"):
"""
Plots the value function as a surface plot.
"""
min_x = min(k[0] for k in V.keys())
max_x = max(k[0] for k in V.keys())
min_y = min(k[1] for k in V.keys())
max_y = max(k[1] for k in V.keys())
x_range = np.arange(min_x, max_x + 1)
y_range = np.arange(min_y, max_y + 1)
X, Y = np.meshgrid(x_range, y_range)
# Find value for all (x, y) coordinates
Z_noace = np.apply_along_axis(lambda _: V[(_[0], _[1], False)], 2, np.dstack([X, Y]))
Z_ace = np.apply_along_axis(lambda _: V[(_[0], _[1], True)], 2, np.dstack([X, Y]))
def plot_surface(X, Y, Z, title):
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0)
ax.set_xlabel('Player Sum')
ax.set_ylabel('Dealer Showing')
ax.set_zlabel('Value')
ax.set_title(title)
ax.view_init(ax.elev, -120)
fig.colorbar(surf)
plt.show()
plot_surface(X, Y, Z_noace, "{} (No Usable Ace)".format(title))
plot_surface(X, Y, Z_ace, "{} (Usable Ace)".format(title))
def plot_episode_stats(stats, smoothing_window=10, noshow=False):
# Plot the episode length over time
fig1 = plt.figure(figsize=(10,5))
plt.plot(stats.episode_lengths)
plt.xlabel("Episode")
plt.ylabel("Episode Length")
plt.title("Episode Length over Time")
if noshow:
plt.close(fig1)
else:
plt.show(fig1)
# Plot the episode reward over time
fig2 = plt.figure(figsize=(10,5))
rewards_smoothed = pd.Series(stats.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean()
plt.plot(rewards_smoothed)
plt.xlabel("Episode")
plt.ylabel("Episode Reward (Smoothed)")
plt.title("Episode Reward over Time (Smoothed over window size {})".format(smoothing_window))
if noshow:
plt.close(fig2)
else:
plt.show(fig2)
# Plot time steps and episode number
fig3 = plt.figure(figsize=(10,5))
plt.plot(np.cumsum(stats.episode_lengths), np.arange(len(stats.episode_lengths)))
plt.xlabel("Time Steps")
plt.ylabel("Episode")
plt.title("Episode per time step")
if noshow:
plt.close(fig3)
else:
plt.show(fig3)
return fig1, fig2, fig3
详情:python - module 'plotting' has no attribute 'EpisodeStats' - Stack Overflowhttps://stackoverflow.com/questions/62287080/module-plotting-has-no-attribute-episodestats