R实验 参数估计

  • 实验目的:
  1. 掌握矩法估计与极大似然估计的求法;
  2. 了解估计量的优良性准则:无偏性、有效性、相合性(一致性);
  3. 学会利用R软件完成一个正态总体均值和两个正态总体均值差的区间估计;
  4. 学会利用R软件完成两个成对数据均值差的区间估计;
  5. 学会利用R软件完成一个总体比例和两个总体比例差的区间估计;
  6. 掌握大样本数据关于单个总体均值和总体比例的样本容量的确定方法。

实验内容:

(习题5.1)下表列出 50 个抽取自二项分布总体 B(n, p) 的数据(数据存放在 binom . data件中),试用矩估计方法估计参数np

来自二项分布总体的数据

15

16

14

15

16

11

15

15

12

14

14

14

12

14

12

15

14

14

12

14

15

17

18

10

13

12

15

17

16

18

17

12

10

15

13

12

14

16

16

16

15

11

13

15

16

17

14

11

16

17

解:若将n作为未知参数,则需要同时考虑一阶矩和二阶矩。

总体的一阶矩和二阶矩分别为:

a1 =E(X)= npa2 =E(X 2)= var(X)+(E(x))2 = np(1-p)+(np)2,

根据矩估计的基本思想,a1 = A1,a2 = A2,(其中

即有

解上述方程组,可得

以下请根据上式完成R程序,计算出参数np的矩估计量的值

(参考n = 20.0284,p = 0.713986)

源代码:

# 读取数据

data <- scan("C:/Users/黄培滇/Desktop/R语言生物统计学/chap05/binom.data")



# 计算参数估计

m1 <- mean(data)

m2 <- mean(data^2)



p=1+m1-m2/m1

n=m1/p

p

n

  

运行结果或截图:

(习题5.2)设总体X的分布密度函数为

从总体X抽取的样本为:

0.1  0.2  0.9  0.8  0.7  0.7  0.6  0.5

求参数a 的极大似然估计量

解:

X1,X2,…,Xn 为其样本,只需要考虑xÎ(0, 1)部分。依题意,

此分布的似然函数为         L(a ; x) =

相应的对数似然函数为       ln L(a ; x) = n ln(a +1)+ a ln

令           

 ln=0

解此似然方程得到

,或写为

容易验证

,从而a 使得L达到极大,即参数a 的极大似然估计量

以下请根据上式完成R程序,计算出参数a 的极大似然估计量的值。

源代码:

data<-c(0.1,0.2,0.9,0.8,0.7,0.7,0.6,0.5)

n<-length(data)

alpha_hat<-n/(-sum(log(data)))-1

alpha_hat

运行结果或截图:

补充:求参数a 的矩估计量。由于只有一个参数,因此只需要考虑a1 = A1,即E(X)=

而由E(X)的定义有:E(X)=

因此,解得

以下请根据上式完成R程序,计算出参数a 的矩估计量的值,并与其极大似然估计量的值进行比较。

源代码:

data<-c(0.1,0.2,0.9,0.8,0.7,0.7,0.6,0.5)

data_bar<-mean(data)

alpha_hat_moment<-(data_bar-1)*(data_bar+2)

alpha_hat_moment

运行结果或截图:

(习题5.4)为研究新生儿出生时的体重,随机地选取了某妇产医院的100个新生儿,其样本均值为3338g,样本标准差为629g。试计算新生儿平均体重的置信水平为95%的置信区间。

提示:参考例5.6

解:源代码及运行结果:(复制到此处,不要截图)

birth_bar<-3338

birth_S<-629

n<-100

alpha<-0.05

z<-qnorm(1-alpha/2)

c(birth_bar - birth_S/sqrt(n)*z,birth_bar + birth_S/sqrt(n)*z)

结论:

(习题5.5)某妇产医院有意估计产妇在该医院住院的平均天数,在过去的年份中随机抽取了 36位孕妇,每位孕妇住院天数取整后如下表所示(数据存放在 hospital.data 文件中)。使用这些数据构建 95% 的置信区间,估计在该医院生小孩的所有孕妇的平均住院天数。

提示:参考例5.10。由于此题是小样本数据,也可以直接使用t.test()函数。

解:源代码及运行结果:(复制到此处,不要截图)

> H_data<-scan("C:\\Users\\黄培滇\\Desktop\\R语言生物统计学\\chap05\\hospital.data")

Read 36 items

> H_bar<-mean(H_data);S<-sd(H_data)

> n<-length(H_data)

> alpha<-0.05

> t<-qt(1-alpha/2,df = n-1)

> c(H_bar - S/sqrt(n)*t,H_bar + S/sqrt(n)*t)

[1] 2.910812 3.700299

结论:

即95%的产妇在医院的平均住院时间在2~3天

(习题5.8)已知某种灯泡寿命服从正态分布,在某星期所生产的该灯泡中随机抽取10 只,测得其寿命(单位:小时)为

1067  919  1196  785  1126  936  918  1156  920  948

求灯泡寿命平均值的置信度为0.95的单侧置信下限。

提示:此题是一个正态总体的区间估计问题,且由于总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。参考例5.11,单侧置信下限,t.test()函数中的参数alternative="greater"。

解:源代码及运行结果:(复制到此处,不要截图)

> L<-c(1067,919,1196,785,1126,936,918,1156,920,948)

> t.test(L,alternative="greater")

One Sample t-test

data:  L

t = 23.969, df = 9, p-value = 9.148e-10

alternative hypothesis: true mean is greater than 0

95 percent confidence interval:

 920.8443      Inf

sample estimates:

mean of x

    997.1

结论:

即这批灯泡中95%的平均寿命在997.1小时以上

(习题5.11)某调查公司对 902 名高尔夫女选手进行了一项调查,以了解女选手怎样看待自己在比赛中的安排。调查结果显示 397 名女选手对下午茶的时间感到满意。(1) 试计算所有女选手对下午茶的时间感到满意的置信区间,这里取置信水平为 0.95; (2) 如果使用binom. test ()函数精确计算两者相差多少?

提示:参考例5.12。

解:源代码及运行结果:(复制到此处,不要截图)

> my<-397;w<-902> p<-my/w;q<-1-p> alpha<-0.05;z<-qnorm(1-alpha/2)

> c(p-z*sqrt(p*q/w),p+z*sqrt(p*q/w))

0.4077379 0.4725281

> binom.test(my,w)

Exact binomial test

data:  my and w

number of successes = 397, number of trials =

902, p-value = 0.0003617

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

 0.4074246 0.4732337

sample estimates:

probability of success

              0.440133

结论:

即在女子高尔夫比赛时间安排中,女选手对下午茶的时间满意总体比例在0.407~0.473的概率是95%

两者相差0.440133

(续习题5.12)如果希望新生儿的平均体重与总体均值的边际误差不超过 100 ,应从该妇产医院随机地选取多少名新生儿?

提示:例5.13。

解:源代码及运行结果:(复制到此处,不要截图)

> birth_S<-629

> E<-100

> alpha<-0.05

> z<-qnorm(1-alpha/2);

> (n<-z^2*birth_S^2/E^2)

[1] 151.9839

结论:

说明还需要从妇产医院再随机抽取52名新生儿

(习题5.13)某汽车营销公司计划估计某地区拥有小汽车家庭所占的比重,要求边际误差不超过5%,置信水平取 90%, 问应抽取多少样本?公司调查人员认为,拥有小汽车家庭的实际比重不会超过 20%,如果这一结论成立,应抽取多少样本?

提示:例5.14。

解:源代码及运行结果:(复制到此处,不要截图)

> p<-0.2;E<-0.05;alpha<-0.1

> z<-qnorm(1-alpha/2)

> (n<-z^2*p*(1-p)/E^2)

[1] 173.1548

结论:

即需要随机抽取174个家庭

(习题5.16)甲、乙两种稻种分别播种在10块试验田中,每块试验田甲、乙稻种各种一半。假设两稻种产量X, Y均服从正态分布,且方差相等。收获后10块试验田的产量如下所示(单位:千克)。

甲种

140

137

136

140

145

148

140

135

144

141

乙种

135

118

115

140

128

131

130

115

131

125

求出两稻种产量的期望差m1-m2的置信区间(a =0.05)。

提示:此题是两个正态总体的区间估计问题,且由于两总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。t.test()可做两正态样本均值差的估计。注意此例中两样本方差相等。

解:源代码及运行结果:(复制到此处,不要截图)

> a<-c(140,137,136,140,145,148,140,135,144,141)

> b<-c(135,118,115,140,128,131,130,115,131,125)

> a_bar<-mean(a);Sa<-sd(a);na<-length(a)

> b_bar<-mean(b);Sb<-sd(b);nb<-length(b)

> alpha<-0.05;z<-qnorm(1-alpha/2)

> S<-sqrt(Sa^2/na + Sb^2/nb)

> c(a_bar - b_bar - z*S,a_bar - b_bar + z*S)

[1]  7.956516 19.643484

结论:

两个稻种产量的期望差在95%的置信水平下位于[7.96, 19.64]这个区间内。

(习题5.17)甲、乙两组生产同种导线,现从甲组生产的导线中随机抽取4根,从乙组生产的导线中随机抽取5根,它们的电阻值(单位:W)分别为

甲组

0.143

0.142

0.143

0.137

已组

0.140

0.142

0.136

0.138

0.140

假设两组电阻值分别服从正态分布N(m1, s 2)和N(m1, s 2),s 2未知。试求m1-m2的置信区间系数为0.95的区间估计。

提示:此题是两个正态总体的估计问题,且由于两总体方差未知,因此可以直接使用R语言中t.test()函数进行分析。t.test()可做两正态样本均值差的估计。注意此例中两样本方差相等。

解:源代码及运行结果:(复制到此处,不要截图)

> x <- c(0.143, 0.142, 0.143, 0.137)

> y <- c(0.140, 0.142, 0.135, 0.138, 0.140)

> x_bar <- mean(x)> Sx <- sd(x)

> nx <- length(x)> y_bar <- mean(y)

> Sy <- sd(y)> ny <- length(y)

> Sw2 <- ((nx - 1) * Sx^2 + (ny - 1) * Sy^2) / (nx + ny - 2)

> S <- sqrt(Sw2 * (1/nx + 1/ny))

> alpha <- 0.05> t <- qt(1 - alpha/2, nx + ny - 2)

> conf_interval <- c(x_bar - y_bar - t*S, x_bar - y_bar + t*S)

> conf_interval

[1] -0.002104423  0.006604423

结论:

两组之差的置信区间系数为0.95的区间估计为-0.002,0.007

思考:

常用的点估计的方法有哪些?

矩估计法;极大似然估计法;

估计量的优良性准则有哪些?

估计量的优良性准则:无偏性、有效性、相合性(一致性)

在对单个总体样本均值进行区间估计时,可以使用Z统计量和T统计量,这两个统计量分别在什么情况下使用?

总体标准差已知且样本容量较大,则可以使用Z统计量进行区间估计;

如果总体标准差未知或者样本容量较小,则应使用T统计量进行区间估计

对于单个总体比例的区间估计问题,涉及到其实是二项分布。但是当满足
    n大于等于30                条件时,也可以近似使用正态分布来计算。

对于单个总体比例的区间估计,涉及的是二项分布。因此在R语言中,可以使用binom.test()函数进行区间估计,它是精确检验函数,通常用于小样本数据;当处理大样本数据时,在R语言并没有使用正态分布函数,而是使用了  prop.test()      分布函数?同样,在使用这个分布函数时,仍然需要满足 样本容量足够大,且满足二项分布近似正态性                   条件。

在对两个总体样本均值差进行区间估计时,可以使用Z统计量和T统计量,这两个统计量分别在什么情况下使用?

两个总体标准差已知,用Z统计量

两个总体标准差未知,用T统计量

在对两个总体样本均值差进行区间估计时,如果使用了T统计量,还要进一步考虑两个总体的     方差      是否相同 ,来分别使用不同的T统计量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/655757.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

预训练模型语义相似性计算(十一) - M3E和BGE

M3E m3e由MokaAI 训练&#xff0c;开源和评测。 m3e的详细介绍可以看官方的github介绍。本文简要摘录其中一些点&#xff0c;以便后续的应用。 1.千万级 (2200w) 的中文句对数据(开源)。 2.支持同质相似句计算(s2s)和异质检索(s2p)&#xff0c;后续支持代码检索。 3.m3e基座模…

Android数据缓存框架 - 内存数据载体从LiveData到StateFlow

引言&#xff1a;所有成功者的背后&#xff0c;都有一份艰苦的历程&#xff0c;不要只看到了人前的风光&#xff0c;而低估了他们背后所付出的努力。 随着flow到流行度越来越高&#xff0c;有开发者呼吁我使用flow&#xff0c;于是我就如你们所愿&#xff0c;新增了StateFlow作…

专家解读 | NIST网络安全框架(2):核心功能

NIST CSF是一个关键的网络安全指南&#xff0c;不仅适用于组织内部&#xff0c;还可帮助管理第三方网络安全风险。CSF核心包含了六个关键功能——治理、识别、保护、检测、响应和恢复&#xff0c;以及与这些功能相关的类别和子类别。本文将深入探讨CSF核心的主要内容&#xff0…

7个靠谱的副业赚钱方法,宝妈,上班族,学生党可以做的兼职副业

你是否也曾面临过这样的困境&#xff1a;生活费紧张&#xff0c;想要找份兼职来补贴家用或是满足自己的小心愿&#xff1f;别担心&#xff0c;今天我将带领你踏入这个丰富多彩的兼职世界&#xff0c;助你轻松达成月入过千的小目标&#xff01; 在我漫长的兼职探索旅程中&#…

js的学习

什么是JavaScript? JavaScript(简称:JS)是一门跨平台、面向对象的脚本语言。是用来控制网页行为的&#xff0c;”它能使网页可交互。 JavaScript 和Java 是完全不同的语言&#xff0c;不论是概念还是设计。但是基础语法类似。 JavaScript在1995 年由 Brendan Eich 发明&#x…

初学者必读:Midjourney AI创作工具的简易使用手册!

在数字化时代&#xff0c;AI的应用不断推动着各个领域的发展。在这些领域中&#xff0c;AI在艺术和设计方面的应用引起了广泛的关注。AI绘画软件作为今年的热门&#xff0c;Midjourney 通过其独特的原理和方便的使用方法&#xff0c;为创作者提供了一个全新的创作逼真绘画的平台…

设计模式15——享元模式

写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用&#xff0c;主要是下面的UML图可以起到大作用&#xff0c;在你学习过一遍以后可能会遗忘&#xff0c;忘记了不要紧&#xff0c;只要看一眼UML图就能想起来了。同时也请大家多多指教。 享元模式&#xff08;Flyweigh…

Golang协程和通道

文章目录 协程&#xff08;goroutine&#xff09;基本介绍GMP模型协程间共享变量 通道&#xff08;channel&#xff09;基本介绍channel的定义方式channel的读写channel的关闭channel的遍历方式只读/只写channelchannel最佳案例select语句 协程&#xff08;goroutine&#xff0…

力扣62 不同路径 Java版本

文章目录 题目描述代码 题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少…

就说说Java初学者求职准备项目的正确方式

当下不少Java初学者也知道求职时项目的重要程度&#xff0c;但在简历上写项目和准备面试项目时&#xff0c;真有可能走弯路&#xff0c;这样的话&#xff0c;加重学习负担还是小事&#xff0c;还真有可能导致无法入职。 1 对于在校生和应届生来说&#xff0c;你去跑通个学习项…

OrangePi AIpro (8T)使用体验,性能测试报告

前言 这段时间收到了CSDN和香橙派的邀请&#xff0c;对OrangePi AIpro进行体验测评&#xff0c;在此感谢CSDN对我的信任&#xff0c;也感谢香橙派能做出如此优秀的开发板。 可喜可贺&#xff0c;周三晚上我收到了官方寄出的OrangePi AIpro。出于对国产芯片的好奇&#xff0c…

5.29高通技术分享抢先看 | 2024高通边缘智能创新应用大赛公开课

火力全开&#xff01;2024高通边缘智能创新应用大赛首期公开课将在5月29日晚上8点炫酷启动&#xff01; 届时&#xff0c;来自大赛主办方高通技术公司的产品市场总监李骏捷和高级资深工程师李万俊将于云端聚首&#xff0c;带来一场关于边缘智能的前沿技术对话。 各位参赛者及…

Java实现对PDF、纵向、横向页面添加自定义水印功能

Java实现对PDF、纵向、横向页面添加自定义水印 效果图 -- 纵向 页面PDF使用到JAR Maven依赖版本效果图 -- 横向页面PDF 效果图 – 纵向 页面PDF 代码如下&#xff1a; 使用到JAR Maven依赖版本 <dependency><groupId>org.apache.pdfbox</groupId><artifa…

基于SpringBoot的本科生考研率统计系统

基于SpringBoot的本科生考研率统计系统 一、开发技术二、功能模块三、代码结构四、数据库设计五、运行截图六、源码获取 一、开发技术 技术&#xff1a;SpringBoot、MyBatis-Plus、Redis、MySQL、Thymeleaf、Html、Vue、Element-ui。 框架&#xff1a;基于开源框架easy-admin开…

【踩坑】编译opencv将python (for build) python2.7改为python3

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 出现问题 默认是2.7 解决方案 cmake时候添加&#xff1a; -D PYTHON_DEFAULT_EXECUTABLE$(which python3)

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…

2024-5-28 石群电路-16

2024-5-28&#xff0c;星期二&#xff0c;20:14&#xff0c;天气&#xff1a;晴&#xff0c;心情&#xff1a;晴。今天没有什么特别的事情发生&#xff0c;不过返校假期已经开始啦&#xff0c;和女朋友逛了街&#xff0c;吃了好吃的&#xff0c;学习也当然不能落下啦&#xff0…

JQuery 入门

一、jQuery 概述 1、JavaScript 库 仓库:可以把很多东西放到这个仓库里面。找东西只需要到仓库里面查找就可以 JavaScript 库&#xff1a;即library&#xff0c;是一个封装好的特定的集合&#xff08;方法和函数&#xff09;。从封装一大堆函数的角度理解库&#xff0c;就是在…

[nextjs]推荐几个很好看的模板网站

最近在做网站,折腾了 vue 框架,然后发现了 nextjs 框架,感觉这个做出来的网站配色很好看,然后又开始研究这个 网站配色好看是因为用的 tailwindcss,找网站过程中,发现了几个很好看的模板网站,在这里推荐下,或许你也能用得上 推荐第一个网站是: https://tailspark.co/ 有组件,也…

广场舞团|基于SprinBoot+vue的广场舞团系统(源码+数据库+文档)

广场舞团系统 目录 基于SprinBootvue的广场舞团系统 一、前言 二、系统设计 三、系统功能设计 1 系统功能模块 2 后台登录模块 5.2.1管理员功能模块 5.2.2社团功能模块 5.2.3用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推…