Llama模型家族训练奖励模型Reward Model技术及代码实战(一)

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)

利用人类反馈对大型语言模型进行微调的一种流行技术,称为基于人类反馈的强化学习,简称 RLHF。

RLHF 中的 LLM 权重更新由用户对 LLM 生成的完成给予的奖励(反馈)驱动。确定奖励是一项复杂的任务。一种方法是让人类根据某些对齐指标评估模型的所有完成情况,例如确定输出是否有用。此反馈是一个缩放量。然后迭代更新 LLM 权重,以最大化从人类分类器获得的奖励。

数据采集

获取人工反馈既耗时又费钱。作为一种解决方法,可以训练另一个称为奖励模型的模型,作为人工反馈的代理。奖励模型的目标是评估模型响应与人类偏好的一致程度。简单地说,奖励模型是一种以(提示,响应)对为输入,以奖励/分数为输出的模型。这可以表述为一个简单的回归或分类任务。构建这样一个模型的真正挑战是高质量的数据集。对好/坏的看法因人而异,将其映射到一个标量是不可行的。

在这里插入图片描述
一种解决方法是让标注员比较两个答案,然后决定哪一个更好。这种数据集称为比较数据集,每条记录包括(提示、选择的答案、拒绝的答案)。

在这里插入图片描述

训练

要训​​练奖励模型,比较数据集应采用 (提示、选择的响应、拒绝的响应) 格式,即优先选择。排序至关重要,因为它是设计奖励模型损失函数时的基本假设。可以使用任何可以接受可变长度文本输入并输出缩放值的模型。通常, 使用与 任务一致的 SFT 模型,并删除最后一个去嵌入层,同时在最后一层添加单个神经元作为缩放器输出。

在这里插入图片描述

对于每个时期, 对模型进行两次传递。

  • 在第一次传递中, 将提示和选择的响应输入到奖励模型,输出为 Rchosen。
  • 在第二次传递中,将相同的提示和被拒绝的响应一起输入。在这种情况下,输出为 Rrejected。

接下来,使用下面定义的损失函数来更新奖励模型。

在这里插入图片描述
损失函数背后的直觉是最大化选择答案分数和拒绝答案分数之间的差距。如果选择答案的奖励分数非常高,而拒绝答案的奖励分数很低,则损失为 0。

TRL 定制奖励模型

奖励模型是人类反馈的代理,它将(提示,响应)对作为输入并根据人类偏好返回分数。TRL 支持自定义奖励建模,任何人都可以在他们的数据集和模型上执行奖励建模。
在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/655738.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024-5-28 石群电路-16

2024-5-28,星期二,20:14,天气:晴,心情:晴。今天没有什么特别的事情发生,不过返校假期已经开始啦,和女朋友逛了街,吃了好吃的,学习也当然不能落下啦&#xff0…

JQuery 入门

一、jQuery 概述 1、JavaScript 库 仓库:可以把很多东西放到这个仓库里面。找东西只需要到仓库里面查找就可以 JavaScript 库:即library,是一个封装好的特定的集合(方法和函数)。从封装一大堆函数的角度理解库,就是在…

[nextjs]推荐几个很好看的模板网站

最近在做网站,折腾了 vue 框架,然后发现了 nextjs 框架,感觉这个做出来的网站配色很好看,然后又开始研究这个 网站配色好看是因为用的 tailwindcss,找网站过程中,发现了几个很好看的模板网站,在这里推荐下,或许你也能用得上 推荐第一个网站是: https://tailspark.co/ 有组件,也…

广场舞团|基于SprinBoot+vue的广场舞团系统(源码+数据库+文档)

广场舞团系统 目录 基于SprinBootvue的广场舞团系统 一、前言 二、系统设计 三、系统功能设计 1 系统功能模块 2 后台登录模块 5.2.1管理员功能模块 5.2.2社团功能模块 5.2.3用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推…

3步骤找回丢失文件!EasyRecovery让你轻松应对数据灾难!

EasyRecovery:数据丢失的终结者,您的数字世界守护神 在数字化时代,数据已经成为我们生活的一部分。无论是个人照片、重要文件还是企业资料,数据都扮演着重要的角色。然而,意外删除、格式化、系统崩溃或病毒攻击等原因导…

Discourse 使用 DiscourseConnect 来进行用户数据同步

我们都知道 Discourse 的用户管理和设置都高度依赖电子邮件。 如果 Discourse 没有设置电子邮件 SMTP 的话,作为管理员是没有办法对用户邮箱进行修改并且通过验证的。 可以采取的办法是通过 Discourse 的 DiscourseConnect 来进行用户同步。 根据官方的说法&…

【MySQL精通之路】InnoDB(4)-架构图

下图显示了构成InnoDB存储引擎体系结构的内存和磁盘结构。有关每个结构的信息 请参阅“内存中的InnoDB结构”和“磁盘上的InnoDB结构”。

C++ 常量和变量

1 常量 具体把数据写出来 2,3&#xff0c;4&#xff1b;1.2 1.3;“Hello world!”,“C” cout<<2015 常量&#xff1a;不能改变的量。 字面常量&#xff08;字面量、直接常量&#xff09;:直接写出的数据。 符号常量&#xff1a;用符号表示数据&#xff0c;但它一旦确定…

TIM输出比较

一、OC&#xff08;Output Compare&#xff09;输出比较 1、输出比较可以通过比较CNT&#xff08;计数器&#xff09;与CCR&#xff08;捕获/比较寄存器&#xff09;寄存器值的关系&#xff0c;来对输出电平进行置1、置0或翻转的操作&#xff0c;用于输出一定频率和占空比的PW…

HBase分布式数据库入门到精通

文章目录 HBase分布式数据库入门到精通 一、简单介绍 二、HBase数据模型 三、HBase的架构 四、HBase写操作流程 五、HBase读操作流程 六、HBase minor小合并和major大合并 七、HBase目标表meta表 八、HBase特点 九、HBase的使用场景 HBase分布式数据库入门到精通 一、…

Windows hook介绍与代码演示

Windows Hook 是一种机制&#xff0c;允许应用程序监视系统或处理特定事件。它可以拦截和更改消息&#xff0c;甚至可以插入到其他应用程序的消息处理机制中。Windows 提供了多种挂钩类型&#xff0c;例如键盘挂钩、鼠标挂钩、消息挂钩等。 hook代码实现 下面是一个使用 Wind…

总结 HTTP 协议的基本格式

一、HTTP 是什么 HTTP ( 全称为 " 超文本传输协议 ") 是一种应用非常广泛的 应用层协议 . HTTP 诞生与 1991 年 . 目前已经发展为最主流使用的一种应用层协议 . HTTP 协议目前有三个大版本: HTTP / 1 和 HTTP / 2 都是基于TCP 传输控制协议传输数据。最新版本的…

python PyQt5 数字时钟程序

效果图&#xff1a; 概述 本文档将指导您如何使用Python的PyQt5库创建一个简单的时钟程序。该程序将显示当前时间&#xff0c;并具有以下特性&#xff1a; 始终在最前台显示。窗口可拖动。鼠标右键点击窗口可弹出退出菜单。时间标签具有红色渐变效果。窗口初始化时出现在屏幕…

央视网视频下载和花屏问题处理

央视网(www.cctv.com)视频下载往往是花屏的&#xff0c;如何处理呢&#xff1f; 如果您是IT技术开发者&#xff0c;那么您可以通过下面步骤自己实现。 用chrome浏览器&#xff0c;F2打开开发者工具&#xff0c;找到当前页面的network 然后找一个接口&#xff1a;https://vdn.a…

php TP8 阿里云短信服务SDKV 2.0(跳大坑)

安装&#xff1a;composer require alibabacloud/dysmsapi-20170525 2.0.24 官方文档&#xff1a;短信服务_SDK中心-阿里云OpenAPI开发者门户 (aliyun.com) 特别注意&#xff1a;传入参数获得值形式 这样也不行 $sendSmsRequest new SendSmsRequest($addData); 还有一个大坑…

工作纪实50-Idea下载项目乱码

下载了公司的一份项目代码&#xff0c;发现是gbk格式的&#xff0c;但是我的日常习惯又是utf-8&#xff0c;下载项目以后全是乱码&#xff0c;一脸懵 借用网友的一张图&#xff0c;如果是一个一个文件这么搞&#xff0c;真的是费劲&#xff0c;好几百个文件&#xff01; 步骤…

redis 主从复制薪火相传 哨兵sentinel配置以及底层原理

薪火相传 我们知道redis的主从复制还有一个常见的架构 ---薪火相传 使用这种结构可以有效减轻master节点的复制数据同步压力 注意这里的6380节点仍然是slave节点 可以理解为一个中间节点,仍然是不可以写只可以读取的 我们只需要使用 slaveof ip port 这里可能访问节点的时候出…

【Real】[Flask]SSTI

文章目录 前言一、题目解读二、解题过程三、知识点Flask是什么SSTI是什么SSTI是如何形成的易于利用的类payload是什么 探索类型和类层次结构和方法 前言 温馨提示&#xff1a;看到哪里不懂直接跳到知识点部分&#xff0c;理解完再回到解题过程。 一、题目解读 题目是[Flask]S…

Android 项目Gradle文件讲解(Groovy和Kotlin)

Android 项目Gradle文件讲解&#xff08;Groovy和Kotlin&#xff09; 前言正文一、Gradle的作用二、Gradle的种类① 工程build.gradle② 项目build.gradle③ settings.gradle④ gradle.properties⑤ gradle-wrapper.properties⑥ local.properties 三、Groovy和Kotlin的语言对比…

专业的Java工程管理软件源码:详尽的项目模块及其功能点清单

在工程项目管理软件领域&#xff0c;我们致力于提供全过程、全方位的综合管理解决方案。该软件覆盖了建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营的各个环节&#xff0c;确保项目管理的全面性和高效性。 工程项目管理软件包含…