DINO结构中的exponential moving average (ema)和stop-gradient (sg)

DINO思路介绍

在这里插入图片描述

在 DINO 中,教师和学生网络分别预测一个一维的嵌入。为了训练学生模型,我们需要选取一个损失函数,不断地让学生的输出向教师的输出靠近。softmax 结合交叉熵损失函数是一种常用的做法,来让学生模型的输出与教师模型的输出匹配。具体地,通过 softmax 函数把教师和学生的嵌入向量尺度压缩到 0 到 1 之间,并计算两个向量的交叉熵损失。这样,在训练过程中,学生模型可以通过模仿教师模型的输出来学习更好的特征表示,从而提高模型的性能和泛化能力。当然,这也可以看作是一个分类问题,以便网络可以从局部视图中学习更有意义的全局表示。

论文对图片中DINO结构的解释如下

我们用一个简单的视角对 (x1, x2) 来说明DINO。在该模型中,输入图像经过两种不同的随机变换后分别传递给学生网络和教师网络。两个网络具有相同的架构但参数不同。教师网络的输出以批次的均值进行中心化。每个网络输出一个K 维的特征,并通过特征维度上的温度 softmax进行归一化。然后通过交叉熵损失函数来测量它们的相似性。我们在教师网络上应用一个停止梯度(stop-gradient,sg)操作,以仅通过学生网络传播梯度。教师网络的参数通过学生网络参数的指数移动平均(ema)来更新。

核心特点

无标签自蒸馏: 不需要人工标注的数据,通过模型自身的知识传递来进行训练。
双视角 (x1, x2): 输入图像经过两种不同的随机变换,生成两种视角,以增加数据的多样性和模型的鲁棒性。
学生网络和教师网络: 两个网络结构相同,但参数不同。学生网络用于训练,教师网络提供稳定的指导信号。
教师网络输出中心化: 教师网络的输出在批次内进行中心化处理,以消除偏差并稳定训练过程。
温度 Softmax 归一化: 网络输出通过温度 Softmax 进行归一化,控制特征向量的平滑度,防止梯度消失或爆炸。
相似性度量: 通过交叉熵损失函数测量学生网络和教师网络输出之间的相似性,鼓励学生网络学习到与教师网络相似的表示。
停止梯度操作(SG): 在教师网络上应用停止梯度操作,确保梯度只通过学生网络进行反向传播,避免教师网络影响梯度更新。
指数移动平均更新(EMA): 教师网络的参数通过学生网络参数的指数移动平均进行更新,确保教师网络的参数更加平滑和稳定,从而提供可靠的指导信号。

再总结一下:在两个完全一样的教师和学生网络(ViT/CNN 均可)中

  • 教师网络通过 centering 和 sharpening 正则化避免训练崩塌。
      • Centering:教师模型的输出也经过 EMA 操作,从原始激活值中减去一个平均值。
      • Sharpening:在 Softmax 中加入一个 temperature 参数,强制让概率分布更加尖锐。
    • 两个网络的输出都通过 Softmax 层归一化处理
    • 通过交叉熵损失计算损失
  • 学生网络通过 SGD 更新参数,并通过 EMA 更新教师网络参数,教师网络的参数因为sg不会自己动**。

问题一:centering中使用的EMA(Exponential Moving Average)是什么东西,指数是怎么被体现的

在 DINO 中,教师网络的参数通过学生网络参数的指数移动平均(Exponential Moving Average, EMA)进行更新。以下是 EMA 操作的详细解释:

1. 定义

EMA 是一种用于平滑时间序列数据的技术,它通过对新数据赋予较高权重,同时对旧数据赋予较低权重,从而平滑数据变化。具体来说,EMA 的计算公式为:

θ t teacher = α θ t student + ( 1 − α ) θ t − 1 teacher \theta_t^{\text{teacher}} = \alpha \theta_t^{\text{student}} + (1 - \alpha) \theta_{t-1}^{\text{teacher}} θtteacher=αθtstudent+(1α)θt1teacher

其中:

  • θ t teacher \theta_t^{\text{teacher}} θtteacher 是第 t t t 次更新后的教师网络参数。
  • θ t student \theta_t^{\text{student}} θtstudent 是第 t t t 次学生网络的参数。
  • α \alpha α 是平滑系数,介于 0 和 1 之间,通常取一个较小的值(例如 0.99 或 0.999)。
  • θ t − 1 teacher \theta_{t-1}^{\text{teacher}} θt1teacher 是第 t − 1 t-1 t1 次更新后的教师网络参数。
2. 指数的体现

EMA 操作中的“指数”体现在计算过程中旧数据的权重以指数形式递减。具体地,如果我们展开几次 EMA 的更新,可以看到:

θ t teacher = α θ t student + α ( 1 − α ) θ t − 1 student + α ( 1 − α ) 2 θ t − 2 student + ⋯ \theta_t^{\text{teacher}} = \alpha \theta_t^{\text{student}} + \alpha(1 - \alpha) \theta_{t-1}^{\text{student}} + \alpha(1 - \alpha)^2 \theta_{t-2}^{\text{student}} + \cdots θtteacher=αθtstudent+α(1α)θt1student+α(1α)2θt2student+

这表明旧数据的权重以 ( (1 - \alpha)^k ) 的形式递减,其中 ( k ) 是时间步长。因此,最近的数据对当前参数的影响最大,而更早的数据影响则逐渐减小,以指数形式衰减。

3. 核心思想

EMA 操作的核心思想是使教师网络参数逐步融合学生网络的最新知识,同时保留一部分历史信息。这使得教师网络参数更新更加平滑,避免剧烈波动,从而提供稳定的指导信号。

4. 优点
  • 稳定性:通过 EMA,教师网络参数的变化更加平滑,减小了训练过程中的不稳定性。
  • 延迟效应:EMA 赋予新数据较高权重,能够快速反映学生网络的最新学习成果,同时历史信息的保留可以防止模型过拟合于噪声数据。
  • 无梯度反传:在 DINO 中,教师网络的参数更新不需要反向传播梯度,EMA 操作直接基于学生网络参数进行更新,这简化了计算。
5. 在 DINO 中的应用

在 DINO 的训练过程中,教师网络的参数不参与反向传播,而是通过 EMA 操作根据学生网络的参数进行更新。这确保了教师网络能够稳定地指导学生网络学习,同时防止了学生网络的梯度直接影响教师网络。

途中右上角有个sg,这个停止梯度操作又是什么

停止梯度操作 (Stop-Gradient)

在 DINO 中,我们在教师网络上应用了停止梯度(stop-gradient, sg)操作,使得梯度只通过学生网络进行传播。具体来说,停止梯度操作的目的是阻止梯度在反向传播时更新教师网络的参数,而仅更新学生网络的参数。

定义

停止梯度操作是一种在反向传播过程中冻结部分网络参数的技术。通过这种操作,某些部分的网络参数不会更新,以保持其值不变。

作用与优点
  1. 保持教师网络的稳定性:通过停止梯度操作,教师网络的参数在训练过程中保持不变,这有助于提供稳定的指导信号。
  2. 防止梯度泄漏:停止梯度操作可以防止梯度从学生网络泄漏到教师网络,从而确保梯度仅用于更新学生网络的参数。
  3. 增强训练效果:这种操作确保学生网络在训练过程中受到稳定的指导信号,促进其更有效地学习。
在 DINO 中的应用

在 DINO 的训练过程中,教师网络的参数通过指数移动平均(EMA)从学生网络的参数中更新,但不参与反向传播。具体来说:

  • 我们对教师网络应用停止梯度操作,使得梯度不通过教师网络进行传播。
  • 教师网络的参数更新通过 EMA 操作,从学生网络的参数中获得。

停止梯度操作 (Stop-Gradient)

在 DINO 中,我们在教师网络上应用了停止梯度(stop-gradient, sg)操作,使得梯度只通过学生网络进行传播。具体来说,停止梯度操作的目的是阻止梯度在反向传播时更新教师网络的参数,而仅更新学生网络的参数。

定义

停止梯度操作是一种在反向传播过程中冻结部分网络参数的技术。通过这种操作,某些部分的网络参数不会更新,以保持其值不变。

作用与优点
  1. 保持教师网络的稳定性:通过停止梯度操作,教师网络的参数在训练过程中保持不变,这有助于提供稳定的指导信号。
  2. 防止梯度泄漏:停止梯度操作可以防止梯度从学生网络泄漏到教师网络,从而确保梯度仅用于更新学生网络的参数。
  3. 增强训练效果:这种操作确保学生网络在训练过程中受到稳定的指导信号,促进其更有效地学习。
在 DINO 中的应用

在 DINO 的训练过程中,教师网络的参数通过指数移动平均(EMA)从学生网络的参数中更新,但不参与反向传播。具体来说:

  • 我们对教师网络应用停止梯度操作,使得梯度不通过教师网络进行传播。
  • 教师网络的参数更新通过 EMA 操作,从学生网络的参数中获得。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/654779.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++学习笔记(19)——模板

目录 模板参数与非类型模板参数 模板参数 类型模板参数——传递类型 非类型模板参数——传递数量 C11希望array替代静态数组,但实际上vector包揽了一切 模板总结 优点: 缺点: 模板特化:针对某些类型进行特殊化处理 特化…

代码随想录算法训练营第五十三天||1143.最长公共子序列、1035.不相交的线、53. 最大子序和

文章目录 一、1143.最长公共子序列 思路 二、1035.不相交的线 思路 三.53. 最大子序和 思路 一、1143.最长公共子序列 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。 一个字符串的 子序列 是指这样一个新的字符串:它是由原…

mysql中text,longtext,mediumtext区别

文章目录 一.概览二、字节限制不同三、I/O 不同四、行迁移不同 一.概览 在 MySQL 中,text、mediumtext 和 longtext 都是用来存储大量文本数据的数据类型。 TEXT:TEXT 数据类型可以用来存储最大长度为 65,535(2^16-1)个字符的文本数据。如果存储的数据…

stream-实践应用-统计分析

背景 业务部门提供了一个数据,数据甚至不是excel类型的,是data.txt,每一行都是一个数据,需要对此数据进行统计分析 统计各个月份的销量 因为直接获取resources下的data.txt,所以要借助输入流进行获取数据,再…

初识C语言——第二十六天

函数的递归1 什么是递归呢? 递归的两个必要条件 void print(unsigned int n) {if (n > 9){print(n / 10);}printf("%d ", n % 10); }int main() {unsigned int num 0;scanf("%u", &num);//123//递归-函数自己调用自己print(num);//pr…

Scrapy框架简单介绍及Scrapy项目编写详细步骤(Scrapy框架爬取豆瓣网站示例)

引言 Scrapy是一个用Python编写的开源、功能强大的网络爬虫框架,专为网页抓取和数据提取设计。它允许开发者高效地从网站上抓取所需的数据,并通过一系列可扩展和可配置的组件来处理这些数据。Scrapy框架的核心组成部分包括: Scrapy Engine&…

matplotlib ---词云图

词云图是一种直观的方式来展示文本数据,可以体现出一个文本中词频的使用情况,有利于文本分析,通过词频可以抓住一篇文章的重点 本文通过处理一篇关于分析影响洋流流向的文章,分析影响洋流流向的主要因素都有哪些 文本在文末结尾 …

用手机做客服的吐槽点客服亲们有同感吗

聊天宝手机版很好的解决了,客服手机快速回复客户的需求,不论微信,企业微信,千牛或其他手机APP回复客户,都可以用聊天宝APP实现图文一键发送,非常方便 前言 做客服工作,除了电脑上回复客户咨询&…

一文读懂Maven的安装与配置

一、前言【可忽略】 Maven本质是一个项目管理工具,类似于JDK是java开发工具。 我们需要管理什么呢?首先各种各样的依赖,比如SpringFramwork、Mybatis。 简单点做,我们新建个目录,就能管理这些jar包。然而,缺…

第 8 章 机器人平台设计之传感器(自学二刷笔记)

重要参考: 课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ 讲义链接:Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 8.6.1 传感器_激光雷达简介 激光雷达是现今机器人尤其是无人车领域及最重要、最关键也是最常见的传感器之一&…

转型先锋!G7易流的数字化到底有多牛?

在供应链全球一体化进程中,国内外局势的改变,使得物流行业运力供大于求趋势愈加明显,国内供应链参与者面对内外发展需求和激烈的市场竞争,需要打破同质化竞争的局面,提供具有特色的服务,形成专业、高效、灵…

Hexo最新实战:(一)Hexo7.0+GitHub Pages博客搭建

前言 很多平台都能写博客还有创作激励,为什么我又要搭一个?为什么这次要选择用Hexo框架? 对应的原因是流量自由和省钱,第一个,很多平台能写但不是都有收益,而且平台有自身的规则,比如会屏蔽一…

2024第三届AIGC开发者大会圆桌论坛:AI Agent中国落地发展现状及多模态结合具身智能的发展展望

在2024年第三届AIGC开发者大会上,多位业内专家齐聚一堂,共同探讨了AI Agent在中国的落地发展现状以及多模态结合具身智能的发展前景。本次圆桌论坛的嘉宾包括: Fast JP作者于金龙Agent创始人莫西莫必胜作者秦瑞January Agent创始人李晨 多模…

C++编程函数中switch实例用法

switch语法 switch (func_cb.sta) switch后续跟随多个成对的case和break,分别包含if/endif判断语句 每个 case 后跟一个要比较的值和一个冒号,当被测试的变量等于 case 中的常量时,case下一行的语句将被执行 switch 语句可以嵌套。 嵌套时&am…

爬虫逆向实例小记——某数据知识管理网站-DES-ECB模式

aHR0cHM6Ly9rZC5uc2ZjLmNuL2ZpbmFsUHJvamVjdEluaXQ 注意:本文是逆向部分比较少,主要为了流程走通,限于代码搬运工。 第一步:分析页面 此网站经过请求响应,可以看出响应内容为加密内容。 第二步:判断加密类型 在XHR …

【Linux】解决误操作libc.so.6导致的问题,补充:升级glibc注意事项

千万不要轻易动/usr/lib64/libc.so.6。 glibc是Linux系统中最底层的api,Linux几乎所有运行库都依赖glibc。/usr/lib64/libc.so.6属于glibc,在centos7中是个软链接。 一旦误删或误操作libc.so.6,或者glibc新版本不兼容等原因,都可…

c++编程(13)——vector的模拟实现

欢迎来到博主的专栏——c编程 博主ID:代码小豪 文章目录 前言vector的模拟实现vector的成员对象插入、删除、扩容访问vector元素构造函数 填坑:为什么拷贝vector类元素的时候不能用浅拷贝末尾源代码: 前言 博主目前的水平还不能很明确的描述…

CV之Nougat:Nougat(一种基于神经网络实现OCR功能的视觉转换器模型)的简介、安装和使用方法、案例应用之详细攻略

CV之Nougat:Nougat(一种基于神经网络实现OCR功能的视觉转换器模型)的简介、安装和使用方法、案例应用之详细攻略 目录 相关论文 《Nougat: Neural Optical Understanding for Academic Documents》的翻译与解读 Nougat的简介 Nougat的安装和使用方法 1、安装 …

短视频拍摄方式有哪些:四川鑫悦里文化传媒有限公司

​短视频拍摄方式有哪些 在数字化时代,短视频以其短小精悍、传播迅速的特点,成为了人们表达自我、分享生活的重要工具。然而,想要制作出引人入胜的短视频,除了创意和构思,拍摄方式的选择也至关重要。四川鑫悦里文化传…

JavaEE:Servlet创建和使用及生命周期介绍

目录 ▐ Servlet概述 ▐ Servlet的创建和使用 ▐ Servlet中方法介绍 ▐ Servlet的生命周期 ▐ Servlet概述 • Servlet是Server Applet的简称,意思是 用Java编写的服务器端的程序,Servlet被部署在服务器中,而服务器负责管理并调用Servle…