pytorch Stream 多流处理

CUD Stream

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-extensions
    中指出在kenel的调用函数中最后一个可选参数表示该核函数处在哪个流之中。
    在这里插入图片描述
- 参数Dg用于定义整个grid的维度和尺寸,即一个grid有多少个block。为dim3类型。Dim3 Dg(Dg.x, Dg.y, 1)表示grid中每行有Dg.x个block,每列有Dg.y个block,第三维恒为1(目前一个核函数只有一个grid)。整个grid中共有Dg.x*Dg.y个block,其中Dg.x和Dg.y最大值为65535- 参数Db用于定义一个block的维度和尺寸,即一个block有多少个thread。为dim3类型。Dim3 Db(Db.x, Db.y, Db.z)表示整个block中每行有Db.x个thread,每列有Db.y个thread,高度为Db.z。Db.x和Db.y最大值为512,Db.z最大值为62。 一个block中共有Db.x*Db.y*Db.z个thread。计算能力为1.0,1.1的硬件该乘积的最大值为768,计算能力为1.2,1.3的硬件支持的最大值为1024- Ns 的类型为 size_t,用于设置每个block除了静态分配的shared Memory以外,最多能动态分配的shared memory大小,单位为byte。不需要动态分配时该值为0或省略不写。如[__shared__](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared)中所述,此动态分配的内存由声明为外部数组的任何变量使用; 
- 参数S是一个cudaStream_t类型的可选参数,初始值为零,表示该核函数处在哪个流之中。
  • CUDA编程中,默认使用默认流非并行执行kernel,每个kernel由许多thread并行的执行在GPU上。Stream的概念是相对Grid level来说的,使得kernel在一个device上同时执行。
    https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

  • 官方提供的用例

// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
// 以下代码示例将其中每个流定义为从主机到设备的一个内存副本、一个内核启动和一个从设备到主机的内存副本的序列:
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel <<<100, 512, 0, stream[i]>>>
          (outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}
// 通过调用 释放流
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);

PyTorch Stream

  • 在PyTorch中,默认情况下,GPU上的操作是在默认流(default stream)中执行的。默认流是一个序列化的流,其中的操作按照它们出现的顺序逐个执行。这意味着在没有显式指定其他流的情况下,所有的操作都会在默认流中执行。

  • 然而,PyTorch还提供了功能可以将操作提交到其他流中执行,以充分利用GPU的并行性。这对于并行处理多个任务或同时执行多个独立操作非常有用。

  • 您可以使用torch.cuda.Stream()来创建其他流,并使用torch.cuda.current_stream()来获取当前流。然后,您可以将操作提交到指定的流中执行,例如:

import torch

device = torch.device('cuda')

# 创建一个默认流
default_stream = torch.cuda.current_stream()

# 创建一个自定义流
custom_stream = torch.cuda.Stream()

# 在默认流中执行操作
with torch.cuda.stream(default_stream):
    # 执行操作...

# 在自定义流中执行操作
with torch.cuda.stream(custom_stream):
    # 执行操作...

例子

import torch
s1 = torch.cuda.Stream()
s2 = torch.cuda.Stream()
# Initialise cuda tensors here. E.g.:
A = torch.rand(1000, 1000, device = 'cuda')
B = torch.rand(1000, 1000, device = 'cuda')
# Wait for the above tensors to initialise.
torch.cuda.synchronize()
with torch.cuda.stream(s1):
    C = torch.mm(A, A)
with torch.cuda.stream(s2):
    D = torch.mm(B, B)
# Wait for C and D to be computed.
torch.cuda.synchronize()
# Do stuff with C and D.
print(C)
print(D)
// https://stackoverflow.com/questions/70128833/why-and-when-to-use-torch-cuda-stream

这样可以利用多个流来并行执行计算,并在计算和数据传输之间实现重叠。这对于提高GPU利用率和加速训练或推理过程非常有帮助。

错误示例

  • 没有使用 synchronize() 或者 wait_stream()进行同步,可能导致再未完成归一化前执行求和
// https://pytorch.org/docs/stable/notes/cuda.html
cuda = torch.device('cuda')
s = torch.cuda.Stream()  # Create a new stream.
A = torch.empty((100, 100), device=cuda).normal_(0.0, 1.0)
with torch.cuda.stream(s):
    # sum() may start execution before normal_() finishes!
    B = torch.sum(A)

CG

  • https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

  • https://pytorch.org/docs/stable/notes/cuda.html#multistream-capture

  • https://pytorch.org/cppdocs/notes/tensor_cuda_stream.html

  • https://pypi.org/project/pytorch-stream/

  • CUDA 的 Stream and Event https://zhuanlan.zhihu.com/p/369367933

  • GITHUBGIST Gist就是小型代码片段的分享https://www.cnblogs.com/leader755/p/14284716.html

  • [JIT] 在 TorchScript 中支持 CUDA 流 https://github.com/pytorch/pytorch/issues/41355

  • https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics

  • https://github.com/pytorch/pytorch/issues/41355

多设备

// https://pytorch.org/docs/stable/notes/cuda.html#cuda-semantics
cuda = torch.device('cuda')     # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2')  # GPU 2 (these are 0-indexed)

x = torch.tensor([1., 2.], device=cuda0)
# x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
# y.device is device(type='cuda', index=0)

with torch.cuda.device(1):
    # allocates a tensor on GPU 1
    a = torch.tensor([1., 2.], device=cuda)

    # transfers a tensor from CPU to GPU 1
    b = torch.tensor([1., 2.]).cuda()
    # a.device and b.device are device(type='cuda', index=1)

    # You can also use ``Tensor.to`` to transfer a tensor:
    b2 = torch.tensor([1., 2.]).to(device=cuda)
    # b.device and b2.device are device(type='cuda', index=1)

    c = a + b
    # c.device is device(type='cuda', index=1)

    z = x + y
    # z.device is device(type='cuda', index=0)

    # even within a context, you can specify the device
    # (or give a GPU index to the .cuda call)
    d = torch.randn(2, device=cuda2)
    e = torch.randn(2).to(cuda2)
    f = torch.randn(2).cuda(cuda2)
    # d.device, e.device, and f.device are all device(type='cuda', index=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/65475.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Openlayers实战:利用turf获取两个多边形的交集、差集、并集

在数据统计方面,通常会涉及到图形间的交集、并集、差集等。在Openlayers的实战中,我们显示两个多边形的交集、并集、差集的表现。通过turf的方式,可以快速的实现我们的数据处理,具体的请参考源代码。 效果图 源代码 /* * @Author: 大剑师兰特(xiaozhuanlan),还是大剑师…

MySQL 事务原理:事务概述、隔离级别、MVCC

文章目录 一、事务1.1 事务概述1.2 事务控制语句1.3 ACID特性 二、隔离级别2.1 隔离级别的分类2.1.1 读未提交&#xff08;RU&#xff09;2.1.2 读已提交&#xff08;RC&#xff09;2.1.3 可重复读&#xff08;RR&#xff09;2.1.4 串行化 2.2 命令2.3 并发读异常2.3.1 脏读2.3…

Redis实战案例25-附近商铺功能

1. GEO数据结构 Redis中Geohash功能应用 添加地理坐标 求两点之间距离 搜索天安门附近10km的火车站&#xff0c;按升序 2. 导入店铺数据到GEO Redis中存储店铺的信息&#xff0c;将店铺的id和经纬度坐标存到GEO数据类型中去&#xff0c;其中member存id&#xff0c;经纬度对应…

Docker实战-操作Docker容器实战(二)

导语   上篇分享中,我们介绍了关于如何创建容器、如何启动容器、如何停止容器。这篇我们来分享一下如何操作容器。 如何进入容器 可以通过使用-d参数启动容器后会进入后台运行,用户无法查看容器中的信息,无法对容器中的信息进行操作。 这个时候如果我们需要进入容器对容器…

C语言经典小游戏之扫雷(超详解释+源码)

“少年气&#xff0c;是历尽千帆举重若轻的沉淀&#xff0c;也是乐观淡然笑对生活的豁达&#xff01;” 今天我们学习一下扫雷游戏怎么用C语言来实现&#xff01; 扫雷小游戏 1.游戏介绍2.游戏准备3.游戏实现3.1生成菜单3.2游戏的具体实现3.2.1初始化棋盘3.2打印棋盘3.3布置雷…

黑马头条项目学习--Day1: 环境搭建、SpringCloud微服务(注册发现、网关)

Nacos注册发现、网关 a. 项目介绍b. app登录1) 需求分析2) 表结构分析3) 手动加密&#xff08;md5随机字符串&#xff09;4) 用户端微服务搭建5) 功能实现6) app网关7) 网关校验jwt8) 前端集成, 配置nginx a. 项目介绍 业务说明 技术栈说明 [外链图片转存失败,源站可能有防盗…

Spring Boot多级缓存实现方案

1.背景 缓存&#xff0c;就是让数据更接近使用者&#xff0c;让访问速度加快&#xff0c;从而提升系统性能。工作机制大概是先从缓存中加载数据&#xff0c;如果没有&#xff0c;再从慢速设备(eg:数据库)中加载数据并同步到缓存中。 所谓多级缓存&#xff0c;是指在整个系统架…

SpringBoot之logback-spring.xml详细配置

《logback官网》 各种指导文件&#xff0c;有空自己去看&#xff0c;比如&#xff1a;我们需要调整的是布局&#xff0c;直接看Layouts。 pom.xml <!-- 环境配置 --><profiles><profile><id>dev</id><properties><spring.profiles.a…

前端例程20230806:彩色灯珠装饰

演示 这里页面四周的彩色灯珠是会随着页面调整自动调整位置的。 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta na…

【数据结构与算法——TypeScript】哈希表

【数据结构与算法——TypeScript】 哈希表(HashTable) 哈希表介绍和特性 哈希表是一种非常重要的数据结构&#xff0c;但是很多学习编程的人一直搞不懂哈希表到底是如何实现的。 在这一章节中&#xff0c;我门就一点点来实现一个自己的哈希表。通过实现来理解哈希表背后的原理…

2022年03月 Python(一级)真题解析#中国电子学会#全国青少年软件编程等级考试

一、单选题&#xff08;共25题&#xff0c;每题2分&#xff0c;共50分&#xff09; 第1题 已知a“161”&#xff0c;b“16”&#xff0c;c“8”,执行语句da>b and a>c&#xff0c;变量d的值为是&#xff1f; A&#xff1a;0 B&#xff1a;1 C&#xff1a;True D&am…

探究使用HTTP爬虫ip后无法访问网站的原因与解决方案

在今天的文章中&#xff0c;我们要一起来解决一个常见问题&#xff1a;使用HTTP爬虫ip后无法访问网站的原因是什么&#xff0c;以及如何解决这个问题。我们将提供一些实际的例子和操作经验&#xff0c;帮助大家解决HTTP爬虫ip无法访问网站的困扰。 1、代理服务器不可用 使用HT…

【SpringBoot笔记】定时任务(cron)

定时任务就是在固定的时间执行某个程序&#xff0c;闹钟的作用。 1.在启动类上添加注解 EnableScheduling 2.创建定时任务类 在这个类里面使用表达式设置什么时候执行 cron 表达式&#xff08;也叫七子表达式&#xff09;&#xff0c;设置执行规则 package com.Lijibai.s…

面试常问:tcp的三次握手和四次挥手你了解吗?

三次握手和四次挥手是各个公司常见的考点&#xff0c;一个简单的问题&#xff0c;却能看出面试者对网络协议的掌握程度&#xff0c;对问题分析与解决能力&#xff0c;以及数据流管理理解和异常情况应对能力。所以回答好一个tcp的三次握手和四次挥手的问题对于我们的面试成功与否…

(vue)获取对象的键遍历,同时循环el-tab页展示key及内容

(vue)获取对象的键遍历&#xff0c;同时循环el-tab页展示key及内容 效果&#xff1a; 数据结构&#xff1a; "statusData": {"订购广度": [ {"id": 11, "ztName": "广", …

C++笔记之两个类的实例之间传递参数的各种方法

C笔记之两个类的实例之间传递参数的各种方法 code review! 文章目录 C笔记之两个类的实例之间传递参数的各种方法1.构造函数参数传递2.成员函数参数传递3.友元函数4.友元类5.传递指针或引用6.静态成员变量7.静态成员函数8.全局变量或命名空间9.回调函数和函数指针10.观察者模…

pg实现月累计

获取每月累计数据&#xff1a; ​​​ SELECT a.month, SUM(b.total) AS total FROM ( SELECT month, SUM(sum) AS total FROM ( SELECT to_char(date("Joinin"),YYYY-MM) AS month , COUNT(*) AS sum FROM "APP_HR_Staff_Basic_Info" GROUP BY month ) …

做接口测试如何上次文件

在日常工作中&#xff0c;经常有上传文件功能的测试场景&#xff0c;因此&#xff0c;本文介绍两种主流编写上传文件接口测试脚本的方法。 首先&#xff0c;要知道文件上传的一般原理&#xff1a;客户端根据文件路径读取文件内容&#xff0c;将文件内容转换成二进制文件流的格式…

Vue3 第五节 一些组合式API和其他改变

1.provide和inject 2.响应式数据判断 3.Composition API的优势 4.新的组件 5.其他改变 一.provide和inject 作用&#xff1a;实现祖与后代组件间通信 套路&#xff1a;父组件有一个provide选项来提供数据&#xff0c;后代组件有一个inject选项来开始使用这些数据 &…

APP外包开发的学习流程

学习iOS App的开发是一项有趣和富有挑战性的任务&#xff0c;是一个不断学习和不断进步的过程。掌握基础知识后&#xff0c;不断实践和尝试新的项目将使您的技能不断提升。下面和大家分享一些建议&#xff0c;可以帮助您开始学习iOS App的开发。北京木奇移动技术有限公司&#…