目录
- 卷积神经网络概述
- 神经网络原理
- 卷积神经网络
- 卷积层
- 怎么控制输出数据?
- 如何抓取特征
- 池化层
- 归一化层
- 全连接层
- 局部感受野
- 权值共享
- 多卷积核
- 池化
- 子采样
- 多卷积层
- 卷积神经网络的训练
- 前向传播
- BackForward反向传播
- 权值更新过程中的卷积
- 网络结构
- 层的排列规律
- 层的尺寸设置规律
- 相关设置问题
- 网络结构举例
- mageNet-2010网络结构
- DeepID网络结构
- 其它常见网络
- 参考
卷积神经网络概述
自从CNN用于手写数字识别得到成功实践之后,卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。
卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。
子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
神经网络原理
神经网络的每个单元如下:
对应的公式如下:
其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。
下图是一个具有一个隐含层的神经网络:
对应的公式如下:
比较类似的,可以拓展到有多个隐含层。神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则。
举例说来,一个尺寸为200x200x3的图像,会让神经元包含200x200x3=120,000个权重值。而网络中肯定不止一个神经元,那么参数的量就会快速增加!显而易见,这种全连接方式效率低下,大量的参数也很快会导致网络过拟合。而卷积神经网络可以在某些方面很好得解决这个问题。
卷积神经网络
一个简单的卷积神经网络是由各种层按照顺序排列组成,网络中的每个层使用一个可以微分的函数将激活数据从一个层传递到另一个层。卷积神经网络主要由三种类型的层构成:卷积层,池化(Pooling)层和全连接层(全连接层和常规神经网络中的一样)。通过将这些层叠加起来,就可以构建一个完整的卷积神经网络。
以下面网路结构举例,如下图:
卷积层
在前向传播的时候,让每个filter都在输入数据的宽度和高度上滑动(更精确地说是卷积),然后计算整个filter和输入数据任一处的内积。当filter沿着输入数据的宽度和高度滑过后,会生成一个2维的激活图(activation map),激活图给出了在每个空间位置处Receptive field的反应。直观地来说,网络会让filter学习到当它看到某些类型的视觉特征时就激活,具体的视觉特征可能是某些方位上的边界,或者在第一层上某些颜色的斑点。
在每个卷积层上,我们会有一排的filter(比如16个、32、64个,需要多少个,自己定,你开心就好),每个都会生成一个不同的二维激活图。将这些激活映射在深度方向上层叠起来就生成了输出数据。
例如,在100 * 100 * 3的输入下,我定了第一层的 filter 为64个,stride=1,那么输出将是 98 * 98 * 64的矩阵。
一个filter就是一个神经元,当它滑向下一区域时,就相当于切换到下一区域的神经元,这些神经元共享同一组参数也就是filter里的参数,你定了64个filter那么将有64组filter分别扫过一整张图片。
怎么控制输出数据?
3个超参数控制着输出数据体的尺寸:深度(depth),步长(stride)和填充(padding)。
首先,输出数据体的深度是一个超参数:它和使用的filter的数量一致,而每个filter在输入数据中寻找一些不同的东西。举例来说,如果第一个卷积层的输入是原始图像,那么在深度维度上的不同神经元将可能被不同方向的边界,或者是颜色斑点激活。我们将这些沿着深度方向排列、filter相同的神经元集合称为深度列(depth column),也有人使用纤维(fibre)来称呼它们。
其次,在滑动filter的时候,必须指定步长。当步长为1,滤波器每次移动1个像素。当步长为2(或者不常用的3,或者更多,这些在实际中很少使用),filter滑动时每次移动2个像素。这个操作会让输出数据体在空间上变小。
在下文可以看到,有时候将输入数据体用0在边缘处进行填充是很方便的。这个零填充(zero-padding)的尺寸是一个超参数。零填充有一个良好性质,即可以控制输出数据体的空间尺寸(最常用的是用来保持输入数据体在空间上的尺寸,这样输入和输出的宽高都相等)(你可以用0填充,也可以用均值填充,根据需求,你喜欢就好)。
如何抓取特征
当图片上出现与filter相似的特征时,输出的值会有明显变化,训练时根据这种变化,网络会调整参数,让filter记住这个特征。
池化层
为了控制数据体的大小,通常,在连续的卷积层之间会周期性地插入一个池化层。这样的话就能减少网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。池化层使用MAX操作(不一定非要MAX Pooling也可以mean等等,你喜欢),对输入数据体的每一个深度切片独立进行操作,改变它的空间尺寸。最常见的形式是池化层使用尺寸2x2的filter,以步长为2来对每个深度切片进行降采样,将其中75%的激活信息都丢掉。每个MAX操作是从4个数字中取最大值(也就是在深度切片中某个2x2的区域)。深度保持不变。
是不是一定非要用池化层?
答案是否定的。不是非得用池化,我用池化就一定好。举个栗子,Alpha Go论文中有提到,网络是19 * 19的输入,而恰巧围棋棋盘就是19*19路,Alpha Go设计者就把每一步棋子在棋盘的位置当成一张图片,那么网络就可以用CNN,而确实是用的CNN,那么在这上面使用池化的话会发生什么?会丢了棋子信息,因为每一个棋子都会影响棋局的走势,所有不能丢失任一处的棋子信息。
归一化层
在卷积神经网络的结构中,提出了很多不同类型的归一化层,有时候是为了实现在生物大脑中观测到的抑制机制。但是这些层渐渐都不再流行,因为实践证明它们的效果即使存在,也是极其有限的。
全连接层
在全连接层中,神经元对于前一层中的所有激活数据是全部连接的,这个常规神经网络中一样。
局部感受野
卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。
网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。
如下图所示:左图为全连接,右图为局部连接。
在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的万分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。
权值共享
但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。
怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。
更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。
如下图所示,展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。
多卷积核
上面所述只有100个参数时,表明只有1个10*10的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,(如下图所示:不同颜色表明不同的卷积核)。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。
池化
在通过卷积获得了特征 (features) 之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。
例如:对于一个 9696 像素的图像,假设我们已经学习得到了400个定义在88输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) *(96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 7921 * 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。
为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计。
例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化 (pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。
子采样
子采样有两种形式,一种是均值子采样(mean-pooling),一种是最大值子采样(max-pooling)。两种子采样看成特殊的卷积过程,如下图所示:
(1)均值子采样的卷积核中每个权重都是0.25,卷积核在原图inputX上的滑动的步长为2。均值子采样的效果相当于把原图模糊缩减至原来的1/4。
(2)最大值子采样的卷积核中各权重值中只有一个为1,其余均为0,卷积核中为1的位置对应inputX被卷积核覆盖部分值最大的位置。卷积核在原图inputX上的滑动步长为2。最大值子采样的效果是把原图缩减至原来的1/4,并保留每个2*2区域的最强输入。
多卷积层
在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。
卷积神经网络的训练
本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的。
前向传播
前向过程的卷积为典型valid的卷积过程,即卷积核kernalW覆盖在输入图inputX上,对应位置求积再求和得到一个值并赋给输出图OutputY对应的位置。每次卷积核在inputX上移动一个位置,从上到下从左到右交叠覆盖一遍之后得到输出矩阵outputY。如果卷积核的输入图inputX为MxNx大小,卷积核为MwNw大小,那么输出图Y为(Mx-Mw+1)*(Nx-Nw+1)大小。
BackForward反向传播
在错误信号反向传播过程中,先按照神经网络的错误反传方式得到尾部分类器中各神经元的错误信号,然后错误信号由分类器向前面的特征抽取器传播。错误信号从子采样层的特征图(subFeatureMap)往前面卷积层的特征图(featureMap)传播要通过一次full卷积过程来完成。
这里的卷积和上一节卷积的略有区别。如果卷积核kernalW的长度为Mw*Mw的方阵,那么subFeatureMap的错误信号矩阵Q_err需要上下左右各拓展Mw-1行或列,与此同时卷积核自身旋转180度。subFeatureMap的错误信号矩阵P_err等于featureMap的误差矩阵Q_err卷积旋转180度的卷积核W_rot180。
下图错误信号矩阵Q_err中的A,它的产生是P中左上22小方块导致的,该22的小方块的对A的责任正好可以用卷积核W表示,错误信号A通过卷积核将错误信号加权传递到与错误信号量为A的神经元所相连的神经元a、b、d、e中,所以在下图中的P_err左上角的2*2位置错误值包含A、2A、3A、4A。同理,我们可以论证错误信号B、C、D的反向传播过程。综上所述,错误信号反向传播过程可以用下图中的卷积过程表示。
权值更新过程中的卷积
卷积神经网络中卷积层的权重更新过程本质是卷积核的更新过程。由神经网络的权重修改策略我们知道一条连接权重的更新量为该条连接的前层神经元的兴奋输出乘以后层神经元的输入错误信号,卷积核的更新也是按照这个规律来进行。
在前向卷积过程中,卷积核的每个元素(链接权重)被使用过四次,所以卷积核每个元素的产生四个更新量。把前向卷积过程当做切割小图进行多个神经网络训练过程,我们得到四个4*1的神经网络的前层兴奋输入和后层输入错误信号,如图所示。
根据神经网络的权重修改策略,我们可以算出如图所示卷积核的更新量W_delta。权重更新量W_delta可由P_out和Q_err卷积得到,如下图所示。
网络结构
卷积神经网络通常是由三种层构成:卷积层,池化层和全连接层(简称FC)。ReLU激活函数也应该算是是一层,它逐元素地进行激活函数操作。在本节中将讨论在卷积神经网络中这些层通常是如何组合在一起的。
层的排列规律
卷积神经网络最常见的形式就是将一些卷积层和ReLU层放在一起,其后紧跟池化层,然后重复如此直到图像在空间上被缩小到一个足够小的尺寸,在某个地方过渡成成全连接层也较为常见。最后的全连接层得到输出,比如分类评分等。
层的尺寸设置规律
输入层(包含图像的)应该能被2整除很多次。常用数字包括32(比如CIFAR-10),64,96(比如STL-10)或224(比如ImageNet卷积神经网络),384和512。
卷积层 应该使用小尺寸滤波器(比如3x3或最多5x5),使用步长1 。还有一点非常重要,就是对输入数据进行零填充,这样卷积层就不会改变输入数据在空间维度上的尺寸。
池化层负责对输入数据的空间维度进行降采样。最常用的设置是用用2x2Receptive field的最大值池化,步长为2。注意这一操作将会把输入数据中75%的激活数据丢弃(因为对宽度和高度都进行了2的降采样)。 另一个不那么常用的设置是使用3x3的Receptive field,步长为2。最大值池化的Receptive field尺寸很少有超过3的,因为池化操作过于激烈,易造成数据信息丢失,这通常会导致算法性能变差。
相关设置问题
减少尺寸设置的问题:上文中展示的两种设置是很好的,因为所有的卷积层都能保持其输入数据的空间尺寸,汇聚层只负责对数据体从空间维度进行降采样。如果使用的步长大于1并且不对卷积层的输入数据使用零填充,那么就必须非常仔细地监督输入数据体通过整个卷积神经网络结构的过程,确认所有的步长和滤波器都尺寸互相吻合
为什么在卷积层使用1的步长? 在实际应用中,更小的步长效果更好。上文也已经提过,步长为1可以让空间维度的降采样全部由汇聚层负责,卷积层只负责对输入数据体的深度进行变换。
为何使用零填充? 使用零填充除了前面提到的可以让卷积层的输出数据保持和输入数据在空间维度的不变,还可以提高算法性能。如果卷积层值进行卷积而不进行零填充,那么数据体的尺寸就会略微减小,那么图像边缘的信息就会过快地损失掉。
网络结构举例
一个用于CIFAR-10图像数据分类的卷积神经网络的结构可以是[输入层-卷积层-ReLU层-汇聚层-全连接层]。细节如下:输入[32x32x3]存有图像的原始像素值,本例中图像宽高均为32,有3个颜色通道。
卷积层中,神经元与输入层中的一个局部区域相连,每个神经元都计算自己与输入层相连的小区域与自己权重的内积。卷积层会计算所有神经元的输出。如果我们使用12个滤波器(也叫作核),得到的输出数据体的维度就是[32x32x12]。
ReLU层将会逐个元素地进行激活函数操作,比如使用以0为阈值的 作为激活函数。该层对数据尺寸没有改变,还是[32x32x12]。
池化层在在空间维度(宽度和高度)上进行降采样(downsampling)操作,数据尺寸变为[16x16x12]。
全连接层将会计算分类评分,数据尺寸变为[1x1x10],其中10个数字对应的就是CIFAR-10中10个类别的分类评分值。正如其名,全连接层与常规神经网络一样,其中每个神经元都与前一层中所有神经元相连接。
由此看来,卷积神经网络一层一层地将图像从原始像素值变换成最终的分类评分值。其中有的层含有参数,有的没有。具体说来,卷积层和全连接层(CONV/FC)对输入执行变换操作的时候,不仅会用到激活函数,还会用到很多参数(神经元的突触权值和偏差)。
而ReLU层和汇聚层则是进行一个固定不变的函数操作。卷积层和全连接层中的参数会随着梯度下降被训练,这样卷积神经网络计算出的分类评分就能和训练集中的每个图像的标签吻合了。
mageNet-2010网络结构
ImageNet LSVRC是一个图片分类的比赛,其训练集包括127W+张图片,验证集有5W张图片,测试集有15W张图片。本文截取2010年Alex Krizhevsky的CNN结构进行说明,该结构在2010年取得冠军,top-5错误率为15.3%。值得一提的是,在今年的ImageNet LSVRC比赛中,取得冠军的GoogNet已经达到了top-5错误率6.67%。可见,深度学习的提升空间还很巨大。
下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。
参数解释:
输入:224×224大小的图片,3通道
第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
第一层max-pooling:2×2的核。
第二层卷积:5×5卷积核256个,每个GPU上128个。
第二层max-pooling:2×2的核。
第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
第五层卷积:3×3的卷积核256个,两个GPU上个128个。
第五层max-pooling:2×2的核。
第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
第二层全连接:4096维
Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
DeepID网络结构
DeepID网络结构是香港中文大学的Sun Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。
如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。
上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。
其它常见网络
下面是卷积神经网络领域中比较有名的几种结构:
LeNet: 第一个成功的卷积神经网络应用,是Yann LeCun在上世纪90年代实现的。当然,最著名还是被应用在识别数字和邮政编码等的LeNet结构。
AlexNet: AlexNet卷积神经网络在计算机视觉领域中受到欢迎,它由Alex Krizhevsky,Ilya Sutskever和Geoff Hinton实现。AlexNet在2012年的ImageNet ILSVRC 竞赛中夺冠,性能远远超出第二名(16%的top5错误率,第二名是26%的top5错误率)。这个网络的结构和LeNet非常类似,但是更深更大,并且使用了层叠的卷积层来获取特征(之前通常是只用一个卷积层并且在其后马上跟着一个汇聚层)。
ZF Net: Matthew Zeiler和Rob Fergus发明的网络在ILSVRC 2013比赛中夺冠,它被称为ZFNet(Zeiler &Fergus Net的简称)。它通过修改结构中的超参数来实现对AlexNet的改良,具体说来就是增加了中间卷积层的尺寸,让第一层的步长和滤波器尺寸更小。
GoogLeNet: ILSVRC 2014的胜利者是谷歌的Szeged等实现的卷积神经网络。它主要的贡献就是实现了一个奠基模块,它能够显著地减少网络中参数的数量(AlexNet中有60M,该网络中只有4M)。还有,这个论文中没有使用卷积神经网络顶部使用全连接层,而是使用了一个平均汇聚,把大量不是很重要的参数都去除掉了。GooLeNet还有几种改进的版本,最新的一个是Inception-v4。
VGGNet: ILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman实现的卷积神经网络,现在称其为VGGNet。它主要的贡献是展示出网络的深度是算法优良性能的关键部分。他们最好的网络包含了16个卷积/全连接层。网络的结构非常一致,从头到尾全部使用的是3x3的卷积和2x2的汇聚。他们的预训练模型是可以在网络上获得并在Caffe中使用的。VGGNet不好的一点是它耗费更多计算资源,并且使用了更多的参数,导致更多的内存占用(140M)。其中绝大多数的参数都是来自于第一个全连接层。后来发现这些全连接层即使被去除,对于性能也没有什么影响,这样就显著降低了参数数量。
ResNet: 残差网络(Residual Network)是ILSVRC2015的胜利者,由何恺明等实现。它使用了特殊的跳跃链接,大量使用了批量归一化(batch normalization)。这个结构同样在最后没有使用全连接层。读者可以查看何恺明的的演讲(视频,PPT),以及一些使用Torch重现网络的实验。ResNet当前最好的卷积神经网络模型(2016年五月)。何开明等最近的工作是对原始结构做一些优化,可以看论文 Identity Mappings in Deep Residual Networks,2016年3月发表。
参考
https://blog.csdn.net/hjskj/article/details/123683095
台湾大学李宏毅老师的机器学习课程
https://zhuanlan.zhihu.com/p/22038289
https://blog.csdn.net/yunpiao123456/article/details/52437794