文章目录
- 📕一:五花八门的链表结构
- 📖链表与数组的简单对比
- 📖单链表
- 📖循环链表
- 📖双向链表
- 📕二:链表VS数组性能大比拼
- 👿最后说一句
🐱🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。
📕一:五花八门的链表结构
📖链表与数组的简单对比
相比数组,链表是一种稍微复杂一点的数据结构。
对于初学者来说,掌握起来也要比数组稍难一些。这两个非常基础、非常常用的数据结构,我们常常会放到一块儿来比较。所以我们先来看,这两者有什么区别。
我们先从 底层的存储结构 上来看一看。
为了直观地对比,我画了一张图。从图中我们看到,数组需要一块 连续的内存空间 来存储,对内存的要求比较高。如果我们申请一个100MB大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于100MB,仍然会申请失败。
而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组 零散的内存块 串联起来使用,所以如果我们申请的是100MB大小的链表,根本不会有问题。
链表结构五花八门,今天我重点给你介绍三种最常见的链表结构,它们分别是:单链表、双向链表和循环链表。
📖单链表
我们首先来看最简单、最常用的 单链表。
我们刚刚讲到,链表通过指针将一组零散的内存块串联在一起。其中,我们把内存块称为链表的“ 结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,我们把这个记录下个结点地址的指针叫作 后继指针next。
从我画的单链表图中,你应该可以发现,其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。我们习惯性地把第一个结点叫作 头结点,把最后一个结点叫作 尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个 空地址NULL,表示这是链表上最后一个结点。
与数组一样,链表也支持数据的查找、插入和删除操作。
我们知道,在进行数组的插入、删除操作时,为了保持内存数据的连续性,需要做大量的数据搬移,所以时间复杂度是O(n)。而在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。
为了方便你理解,我画了一张图,从图中我们可以看出,针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度是O(1)。
但是,有利就有弊。链表要想随机访问第k个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。
你可以把链表想象成一个队伍,队伍中的每个人都只知道自己后面的人是谁,所以当我们希望知道排在第k位的人是谁的时候,我们就需要从第一个人开始,一个一个地往下数。所以,链表随机访问的性能没有数组好,需要O(n)的时间复杂度。
好了,单链表我们就简单介绍完了,接着来看另外两个复杂的升级版, 循环链表 和 双向链表。
📖循环链表
循环链表是一种特殊的单链表。实际上,循环链表也很简单。它跟单链表唯一的区别就在尾结点。我们知道,单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。从我画的循环链表图中,你应该可以看出来,它像一个环一样首尾相连,所以叫作“循环”链表。
和单链表相比, 循环链表 的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的 约瑟夫问题。尽管用单链表也可以实现,但是用循环链表实现的话,代码就会简洁很多。
单链表和循环链表是不是都不难?接下来我们再来看一个稍微复杂的,在实际的软件开发中,也更加常用的链表结构: 双向链表。
📖双向链表
单向链表只有一个方向,结点只有一个后继指针next指向后面的结点。而双向链表,顾名思义,它支持两个方向,每个结点不止有一个后继指针next指向后面的结点,还有一个前驱指针prev指向前面的结点。
从我画的图中可以看出来,双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。那相比单链表,双向链表适合解决哪种问题呢?
从结构上来看,双向链表可以支持O(1)时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
你可能会说,我刚讲到单链表的插入、删除操作的时间复杂度已经是O(1)了,双向链表还能再怎么高效呢?
别着急,刚刚的分析比较偏理论,很多数据结构和算法书籍中都会这么讲,但是这种说法实际上是不准确的,或者说是有先决条件的。我再来带你分析一下链表的两个操作。
我们先来看 删除操作。
在实际的软件开发中,从链表中删除一个数据无外乎这两种情况:
-
删除结点中“值等于某个给定值”的结点;
-
删除给定指针指向的结点。
对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过我前面讲的指针操作将其删除。
尽管单纯的删除操作时间复杂度是O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为O(n)。
对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点q需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到p->next=q,说明p是q的前驱结点。
但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要O(n)的时间复杂度,而双向链表只需要在O(1)的时间复杂度内就搞定了!
同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在O(1)时间复杂度搞定,而单向链表需要O(n)的时间复杂度。你可以参照我刚刚讲过的删除操作自己分析一下。
现在,你有没有觉得双向链表要比单链表更加高效呢?这就是为什么在实际的软件开发中,双向链表尽管比较费内存,但还是比单链表的应用更加广泛的原因。如果你熟悉Java语言,你肯定用过LinkedHashMap这个容器。如果你深入研究LinkedHashMap的实现原理,就会发现其中就用到了双向链表这种数据结构。
实际上,这里有一个更加重要的知识点需要你掌握,那就是 用空间换时间 的设计思想。当内存空间充足的时候,如果我们更加追求代码的执行速度,我们就可以选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。
📕二:链表VS数组性能大比拼
通过前面内容的学习,你应该已经知道,数组和链表是两种截然不同的内存组织方式。正是因为内存存储的区别,它们插入、删除、随机访问操作的时间复杂度正好相反。
不过,数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。
数组简单易用,在实现上使用的是连续的内存空间,可以借助CPU的缓存机制,预读数组中的数据,所以访问效率更高。
而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法有效预读。
数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。
你可能会说,我们Java中的ArrayList容器,也可以支持动态扩容啊?当我们往支持动态扩容的数组中插入一个数据时,如果数组中没有空闲空间了,就会申请一个更大的空间,将数据拷贝过去,而数据拷贝的操作是非常耗时的。
我举一个稍微极端的例子。如果我们用ArrayList存储了了1GB大小的数据,这个时候已经没有空闲空间了,当我们再插入数据的时候,ArrayList会申请一个1.5GB大小的存储空间,并且把原来那1GB的数据拷贝到新申请的空间上。听起来是不是就很耗时?
除此之外,如果你的代码对内存的使用非常苛刻,那数组就更适合你。因为链表中的每个结点都需要消耗额外的存储空间去存储一份指向下一个结点的指针,所以内存消耗会翻倍。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,如果是Java语言,就有可能会导致频繁的GC(Garbage Collection,垃圾回收)。
所以,在我们实际的开发中,针对不同类型的项目,要根据具体情况,权衡究竟是选择数组还是链表。
👿最后说一句
感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。
才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。