k8s的网路配置

目录

1、k8s相关网络类型

1.1 K8S中Pod网络通信

1.2 Overlay Network

1.3 VXLAN

1.3.1 vlan和vxlan的区别

2、Flannel

2.1 简介

2.2 Flannel工作原理

2.3 ETCD之Flannel提供说明

2.4 Flannel部署

2.4.1 在node节点上操作

2.4.2 在master01节点上操作

2.4.2.1 安装flannel

3、部署 Calico

3.1 k8s 组网方案对比

3.1.1 flannel方案

3.1.2 calico方案

3.2 Calico 主要由三个部分组成

3.3 Calico 工作原理

3.4 部署Calico

4、部署 CoreDNS

4.1 准备需要的镜像

​4.2 准备yml文件启动coredns服务

​4.3 DNS 解析测试


1、k8s相关网络类型

1.1 K8S中Pod网络通信

img

● Pod内容器与容器之间的通信 在同一个Pod内的容器(Pod内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用localhost地址访问彼此的端口。

● 同一个Node内Pod之间的通信 每个Pod都有一个真实的全局IP地址,同一个Node内的不同Pod之间可以直接采用对方Pod的IP地址进行通信,Pod1与Pod2都是通过Veth连接到同一个docker0网桥,网段相同,所以它们之间可以直接通信。

● 不同Node上Pod之间的通信 Pod地址与docker0在同一网段,docker0网段与宿主机网卡是两个不同的网段,且不同Node之间的通信只能通过宿主机的物理网卡进行。 要想实现不同Node上Pod之间的通信,就必须想办法通过主机的物理网卡IP地址进行寻址和通信。因此要满足两个条件:Pod的IP不能冲突,将Pod的IP和所在的Node的IP关联起来,通过这个关联让不同Node上Pod之间直接通过内网IP地址通信。

1.2 Overlay Network

叠加网络,在二层或者三层几乎网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

1.3 VXLAN

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

1.3.1 vlan和vxlan的区别

VLAN(Virtual Local Area Network)和VXLAN(Virtual Extensible LAN)在多个方面存在显著的区别,以下是它们的主要差异:

①定义与功能:

  • VLAN,中文名为“虚拟局域网”,是一种将局域网(LAN)设备从逻辑上划分(而非物理上)成一个个网段(或者说是更小的局域网LAN)的技术,从而实现虚拟工作组(单元)的数据交换。VLAN主要工作在二层网络上,可以基于交换机的虚拟局域网解决冲突域、广播域、带宽问题。
  • VXLAN,中文名为“虚拟可扩展局域网”,是一种网络虚拟化技术,基于IP网络并采用“MAC in UDP”封装形式的二层VPN技术。它试图改进大型云计算的部署时的扩展问题,可以说是对VLAN的一种扩展。VXLAN可以基于已有的服务提供商或企业IP网络,为分散的物理站点提供二层互联,并能够为不同的租户提供业务隔离。

②扩展性:

  • VLAN在跨三层网络的场景中,其扩展性受到限制。
  • VXLAN则是一种在三层网络上构建虚拟二层网络的技术,通过将二层报文封装在三层报文中进行传输,实现了跨三层网络的二层通信,从而具有良好的扩展性。

③虚拟网络空间:

  • VLAN的vlanHeader头部限长是12bit,导致VLAN的限制个数是2^12=4096个,无法满足日益增长的需求。
  • VXLAN使用24位的VNI(VXLAN Network Identifier)字段,理论上可以支持多达1600万个虚拟网络,解决了VLAN数量限制的问题。

④多租户支持:

  • VLAN本身并不直接支持多租户隔离。
  • VXLAN则通过引入MAC-in-UDP封装方式,使得不同租户之间的网络相互隔离,解决了地址冲突问题。

2、Flannel

2.1 简介

Flannel的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址。 Flannel是Overlay网络的一种,也是将TCP源数据包封装在另一种网络包里面进行路由转发和通信,目前支持UDP、VXLAN、host-GW三种数据转发方式。

2.2 Flannel工作原理

img

数据从node01上Pod的源容器中发出后,经由所在主机的docker0虚拟网卡转发到flannel.1虚拟网卡,flanneld服务监听在flanne.1数据网卡的另外一端。

Flannel通过Etcd服务维护了一张节点间的路由表。源主机node01的flanneld服务将原本的数据内容封装到UDP中后根据自己的路由表通过物理网卡投递给目的节点node02的flanneld服务,数据到达以后被解包,然后直接进入目的节点的dlannel.1虚拟网卡,之后被转发到目的主机的docker0虚拟网卡,最后就像本机容器通信一样由docker0转发到目标容器。

2.3 ETCD之Flannel提供说明

存储管理Flannel可分配的IP地址段资源 监控ETCD中每个Pod的实际地址,并在内存中建立维护Pod节点路由表

2.4 Flannel部署

2.4.1 在node节点上操作

cd /opt/
#切换目录
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中

docker load -i flannel.tar
#将镜像文件导入到镜像库中

docker images
#显示镜像信息

mkdir -p /opt/cni/bin
#新建目录

tar xf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
#解压到指定目录

ll /opt/cni/bin
#显示解压的文件
  • node01和node02操作一样 

 

2.4.2 在master01节点上操作

2.4.2.1 安装flannel
cd /opt/k8s
#切换目录

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络

-------------------------------------------------------------------------------------------------------
#查看yml文件
vim /opt/k8s/kube-flannel.yml
---
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: psp.flannel.unprivileged
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: docker/default
    seccomp.security.alpha.kubernetes.io/defaultProfileName: docker/default
    apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
    apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
spec:
  privileged: false
  volumes:
  - configMap
  - secret
  - emptyDir
  - hostPath
  allowedHostPaths:
  - pathPrefix: "/etc/cni/net.d"
  - pathPrefix: "/etc/kube-flannel"
  - pathPrefix: "/run/flannel"
  readOnlyRootFilesystem: false
  # Users and groups
  runAsUser:
    rule: RunAsAny
  supplementalGroups:
    rule: RunAsAny
  fsGroup:
    rule: RunAsAny
  # Privilege Escalation
  allowPrivilegeEscalation: false
  defaultAllowPrivilegeEscalation: false
  # Capabilities
  allowedCapabilities: ['NET_ADMIN', 'NET_RAW']
  defaultAddCapabilities: []
  requiredDropCapabilities: []
  # Host namespaces
  hostPID: false
  hostIPC: false
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  # SELinux
  seLinux:
    # SELinux is unused in CaaSP
    rule: 'RunAsAny'
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: flannel
rules:
- apiGroups: ['extensions']
  resources: ['podsecuritypolicies']
  verbs: ['use']
  resourceNames: ['psp.flannel.unprivileged']
- apiGroups:
  - ""
  resources:
  - pods
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - nodes/status
  verbs:
  - patch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: flannel
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: flannel
subjects:
- kind: ServiceAccount
  name: flannel
  namespace: kube-system
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: flannel
  namespace: kube-system
---
kind: ConfigMap
apiVersion: v1
metadata:
  name: kube-flannel-cfg
  namespace: kube-system
  labels:
    tier: node
    app: flannel
data:
  cni-conf.json: |
    {
      "name": "cbr0",
      "cniVersion": "0.3.1",
      "plugins": [
        {
          "type": "flannel",
          "delegate": {
            "hairpinMode": true,
            "isDefaultGateway": true
          }
        },
        {
          "type": "portmap",
          "capabilities": {
            "portMappings": true
          }
        }
      ]
    }
  net-conf.json: |
    {
      "Network": "10.244.0.0/16",
      "Backend": {
        "Type": "vxlan"
      }
    }
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: kube-flannel-ds
  namespace: kube-system
  labels:
    tier: node
    app: flannel
spec:
  selector:
    matchLabels:
      app: flannel
  template:
    metadata:
      labels:
        tier: node
        app: flannel
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/os
                operator: In
                values:
                - linux
      hostNetwork: true
      priorityClassName: system-node-critical
      tolerations:
      - operator: Exists
        effect: NoSchedule
      serviceAccountName: flannel
      initContainers:
      - name: install-cni
        image: quay.io/coreos/flannel:v0.14.0
        command:
        - cp
        args:
        - -f
        - /etc/kube-flannel/cni-conf.json
        - /etc/cni/net.d/10-flannel.conflist
        volumeMounts:
        - name: cni
          mountPath: /etc/cni/net.d
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      containers:
      - name: kube-flannel
        image: quay.io/coreos/flannel:v0.14.0
        #此处镜像与node节点的镜像是一致的
        command:
        - /opt/bin/flanneld
        args:
        - --ip-masq
        - --kube-subnet-mgr
        resources:
          requests:
            cpu: "100m"
            memory: "50Mi"
          limits:
            cpu: "100m"
            memory: "50Mi"
        securityContext:
          privileged: false
          capabilities:
            add: ["NET_ADMIN", "NET_RAW"]
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: POD_NAMESPACE
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
        volumeMounts:
        - name: run
          mountPath: /run/flannel
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      volumes:
      - name: run
        hostPath:
          path: /run/flannel
      - name: cni
        hostPath:
          path: /etc/cni/net.d
      - name: flannel-cfg
        configMap:
          name: kube-flannel-cfg
-------------------------------------------------------------------------------------------------------

kubectl apply -f kube-flannel.yml
#指定yml文件启动flannel服务

kubectl get pods -n kube-system
#查询指定命名空间(namespace)下的 Pod 资源
#-n:指定命名空间(STATUS:Running)

kubectl get nodes
#查看集群所有节点信息(STATUS:Ready)

 

 

3、部署 Calico

3.1 k8s 组网方案对比

3.1.1 flannel方案

需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

3.1.2 calico方案

Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发。

采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

3.2 Calico 主要由三个部分组成

  • Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
  • Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
  • BIRD:负责分发路由规则,类似路由器。
  • Confd:配置管理组件。

3.3 Calico 工作原理

  • Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
  • 有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
  • 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
  • calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

3.4 部署Calico

在nodes节点上操作

[root@node01 opt]#cd /opt
#切换路径并上传对应的镜像包
[root@node01 opt]#rz -E
rz waiting to receive.
#将镜像包导入镜像库
[root@node01 opt]#docker load -i calico-cni.tar 

[root@node01 opt]#docker load -i calico-node.tar 

[root@node01 opt]#docker load -i calico-kube-controllers.tar 

[root@node01 opt]#docker load -i calico-pod2daemon-flexvol.tar 

[root@node01 opt]#docker images

 

在 master01 节点上操作

cd /opt/k8s
#切换目录

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络

------------------------------------------------------------------------------------------------------
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样

   - name: CALICO_IPV4POOL_CIDR
     value: "10.244.0.0/16"
     #Calico 默认使用的网段为 192.168.0.0/16
     
------------------------------------------------------------------------------------------------------

kubectl apply -f calico.yaml
#指定yml文件启动calico服务

kubectl get pods -n kube-system
#查询指定命名空间(namespace)下的 Pod 资源
#等 Calico Pod 都 Running,节点也会准备就绪

kubectl get nodes
#查看集群所有节点信息(STATUS:Ready)

4、部署 CoreDNS

  • CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析

4.1 准备需要的镜像

在所有 node 节点上操作
cd /opt
#切换目录

#上传 coredns.tar 到 /opt 目录中

docker load -i coredns.tar
#将镜像文件导入到镜像库中

node节点



4.2 准备yml文件启动coredns服务

在 master01 节点上操作
cd /opt/k8s
#切换目录

#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 

--------------------------------------------------------------------------------------------------------

# __MACHINE_GENERATED_WARNING__

apiVersion: v1
kind: ServiceAccount
metadata:
  name: coredns
  namespace: kube-system
  labels:
      kubernetes.io/cluster-service: "true"
      addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: Reconcile
  name: system:coredns
rules:
- apiGroups:
  - ""
  resources:
  - endpoints
  - services
  - pods
  - namespaces
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: EnsureExists
  name: system:coredns
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:coredns
subjects:
- kind: ServiceAccount
  name: coredns
  namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: coredns
  namespace: kube-system
  labels:
      addonmanager.kubernetes.io/mode: EnsureExists
data:
  Corefile: |
    .:53 {
        errors
        health {
            lameduck 5s
        }
        ready
        kubernetes cluster.local in-addr.arpa ip6.arpa {
            pods insecure
            fallthrough in-addr.arpa ip6.arpa
            ttl 30
        }
        prometheus :9153
        forward . /etc/resolv.conf {
            max_concurrent 1000
        }
        cache 30
        loop
        reload
        loadbalance
    }
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: coredns
  namespace: kube-system
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "CoreDNS"
spec:
  # replicas: not specified here:
  # 1. In order to make Addon Manager do not reconcile this replicas parameter.
  # 2. Default is 1.
  # 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
  selector:
    matchLabels:
      k8s-app: kube-dns
  template:
    metadata:
      labels:
        k8s-app: kube-dns
    spec:
      securityContext:
        seccompProfile:
          type: RuntimeDefault
      priorityClassName: system-cluster-critical
      serviceAccountName: coredns
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 100
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                  - key: k8s-app
                    operator: In
                    values: ["kube-dns"]
              topologyKey: kubernetes.io/hostname
      tolerations:
        - key: "CriticalAddonsOnly"
          operator: "Exists"
      nodeSelector:
        kubernetes.io/os: linux
      containers:
      - name: coredns
        image: k8s.gcr.io/coredns:1.7.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            memory: 170Mi
          requests:
            cpu: 100m
            memory: 70Mi
        args: [ "-conf", "/etc/coredns/Corefile" ]
        volumeMounts:
        - name: config-volume
          mountPath: /etc/coredns
          readOnly: true
        ports:
        - containerPort: 53
          name: dns
          protocol: UDP
        - containerPort: 53
          name: dns-tcp
          protocol: TCP
        - containerPort: 9153
          name: metrics
          protocol: TCP
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
        readinessProbe:
          httpGet:
            path: /ready
            port: 8181
            scheme: HTTP
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            add:
            - NET_BIND_SERVICE
            drop:
            - all
          readOnlyRootFilesystem: true
      dnsPolicy: Default
      volumes:
        - name: config-volume
          configMap:
            name: coredns
            items:
            - key: Corefile
              path: Corefile
---
apiVersion: v1
kind: Service
metadata:
  name: kube-dns
  namespace: kube-system
  annotations:
    prometheus.io/port: "9153"
    prometheus.io/scrape: "true"
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "CoreDNS"
spec:
  selector:
    k8s-app: kube-dns
  clusterIP: 10.0.0.2
  ports:
  - name: dns
    port: 53
    protocol: UDP
  - name: dns-tcp
    port: 53
    protocol: TCP
  - name: metrics
    port: 9153
    protocol: TCP
--------------------------------------------------------------------------------------------------------

kubectl apply -f coredns.yaml
#指定yml配置文件启动coredns服务

kubectl get pods -n kube-system 
#查询指定命名空间(namespace)下的 Pod 资源

4.3 DNS 解析测试

kubectl run -it  --image=busybox:1.28.4 sh
#DNS 解析测试

-----------------------------------------------------------------------------------------------------
如果出现以下报错
[root@master01 k8s]#kubectl run -it  --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
Error attaching, falling back to logs: unable to upgrade connection: Forbidden (user=system:anonymous, verb=create, resource=nodes, subresource=proxy)
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log sh)
-----------------------------------------------------------------------------------------------------

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
#需要添加 rbac的权限,直接使用kubectl绑定,clusteradmin 管理员集群角色,授权操作权限

#此时再次dns测试
kubectl run -it --rm dns-test01 --image=busybox:1.28.4 sh
#DNS 解析测试
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes

[root@master01 opt]# kubectl get pod -o wide
NAME                          READY   STATUS    RESTARTS   AGE    IP            NODE     NOMINATED NODE
nginx-test-7dc4f9dcc9-vs2p6   1/1     Running   0          4m3s   172.17.54.3   node01   <none>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/639371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LangChain llamaindex

LangChain 参考&#xff1a; 全流程 | Windows 系统本地部署开源模型阿里通义千问 QWEN 1.5&#xff0c;结合 LangChain-Chatchat 框架和向量数据库 FAISS、Milvus - 知乎

MySQL 插入数据的时候自动忽略重复数据

MySQL中插入数据&#xff0c;如果插入的数据在表中已经存在&#xff08;主键或者唯一键已存在&#xff09;&#xff0c;使用insert into语法的时候&#xff0c;如果遇到重复数据&#xff0c;会直接报错&#xff0c;导致事务回滚&#xff0c;所有插入数据&#xff0c;全部失败。…

Go语言直接使用Windows的IOCP API写一个echo服务器

Go的标准库中Windows下的网络是使用了IOCP的&#xff0c;参见go源码go/src/runtime/netpoll_windows.go&#xff0c;标准库为了与Epoll、kqueue等不同平台的IO模式使用统一的API&#xff0c;进行了封装。 如果想直接使用Windows的IOCP API编程&#xff0c;比如想按照&#xff…

iOS swift5 提示信息显示,提示弹框,第三方框架XHToastSwift

文章目录 1.github地址(亲测好用)2.源代码 1.github地址(亲测好用) XHToastSwift - github 2.源代码 XHToast.swift // // XHToast.swift // XHToastSwiftExample // // Created by xiaohui on 16/8/12. // Copyright © 2016年 CoderZhuXH. All rights reserved. …

x264 码率控制原理:rate_estimate_qscale 函数

rate_estimate_qscale 函数 原理 函数功能:根据目前使用的实际比特数更新一帧的qscale;是一个复杂的决策过程,需要考虑多种因素,如帧类型、编码的复杂度、目标比特率、缓冲区大小等,以确保视频质量和文件大小之间的平衡。函数参数分析:x264_t *h :编码器上下文信息结构…

鸿蒙开发ArkUI-X基础知识:【ArkUI代码工程及构建介绍】

代码工程及构建介绍 背景 ArkUI作为OpenHarmony的默认开发框架&#xff0c;在本项目&#xff08;ArkUI-X&#xff09;中需要做到一套代码同时支持多平台构建&#xff0c;所以会采取共仓开发的方式&#xff0c;部分仓直接指向OpenHarmony相关开源仓。 代码结构及仓库结构 代…

基于YOLO系列算法(YOLOv5、YOLOv6、YOLOv8以及YOLOv9)和Streamlit框架的行人头盔检测系统

摘要 本文基于最新的基于深度学习的目标检测算法 (YOLOv5、YOLOv6、YOLOv8)以及YOLOv9) 对头盔数据集进行训练与验证&#xff0c;得到了最好的模型权重文件。使用Streamlit框架来搭建交互式Web应用界面&#xff0c;可以在网页端实现模型对图像、视频和实时摄像头的目标检测功能…

C语言-atoi()库函数的模拟实现

文章目录 前言一、atoi()库函数的介绍及使用1.1 atoi()库函数介绍1.2 atoi()库函数使用 二、atoi()库函数的模拟实现2.1 函数设计2.2 函数实现思路2.3 具体实现2.4 测试 总结 前言 本篇文章介绍c语言中库函数atoi()的使用&#xff0c;以及模拟实现库函数。 一、atoi()库函数的…

【linux】详解linux权限

目录 用户 文件属性 更改文件权限 更改文件拥有者 更改文件所属组 用户的权限 文件掩码 粘滞位 总结 基本指令可参考&#xff1a; 【linux】详解linux基本指令-CSDN博客 【linux】详解linux基本指令-CSDN博客 用户 超级用户&#xff08;root&#xff09;&#xff…

Redis篇 在linux系统上安装Redis

安装Redis 在Ubuntu上安装Redis 在Ubuntu上安装Redis 在linux系统中,我们安装Redis,必须先使它有root权限. 那么在linux中,如何切换到root用户权限呢? sudo su 就可切换到用户权限了. 在切换到用户权限后,我们需要用一条命令来搜索Redis相关的软件包 apt search redis 会出现非…

怎样下载Android Studio历史版本文件包

1.在官网上下载都是推荐最新版本&#xff0c;想下载历史版本比较费劲&#xff0c;绕来绕去的。 2.进入这个网站可以下载其他版本https://android-studio.en.uptodown.com/windows/versions Older versions of Android Studio Its not uncommon for the latest version of an a…

解耦:哪些方法可以用来解耦代码

目录 1.引用 2.为何解耦如此重要 3.如何判断代码是否需要解耦 4.如何给代码解耦 5.思考题 1.引用 前面我们曾经讲到&#xff0c;重构可以分为大型重构和小型重构。小型重构的主要目的是提高代码的可读性&#xff0c;大型重构的主要目的是解耦。本节讲解如何对代码进行解耦…

webgl three 模型操作

模型位置操作是改变相关属性 平移改变位置 缩放改变缩放值 旋转改变角度 webgl中是4x4矩阵 前三排是原始状态 第四排是改变值 .position 位置 .scale 缩放 .rotation 绕轴旋转 .quaternion 绕axis旋转 其实和svg差不多 缩放 缩放是操作对角线 // Matrix4x4 …

大语言模型的工程技巧(三)——分布式计算

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型&#xff1a;从线性回归到通用人工智能》&#xff0c;欢迎有兴趣的读者多多支持。 本文将讨论如何利用多台机器进行神经网络的分布式训练。利用多台机器来加速大语言模型的训练&#xff0c;是其获得成功的重要原…

操作系统总结3

目录 2.3.3 进程互斥的硬件的实现方法 &#xff08;1&#xff09;知识总览 &#xff08;2&#xff09;中断的屏蔽方法 &#xff08;3&#xff09;TestAndSet指令 &#xff08;4&#xff09;Swap指令 总结 2.3.4 信号量机制 &#xff08;1&#xff09;知识总览 &#x…

《web应用设计》第八次作业

我的小组长是姚若希&#xff0c;我们组课程设计的题目是&#xff1a;学生管理系统 &#xff0c;我认领的功能模块是&#xff1a;课程管理 2.查询并分页

MM模块五(采购订单)

创建采购订单&#xff1a;ME21N 参考报价单创建采购订单&#xff1a; 哪个采购部门的哪个采购员为哪个公司代码下的采购订单 点击保存 注&#xff1a;采购订单的数量不能大于采购申请的数量

选择优化求解器的关键因素:以MindOpt为例

选择一款适合自己业务需求的求解器我们一般需要考量什么呢&#xff1f;可求解的问题类型&#xff1f;问题规模&#xff1f;本文将介绍一些需要考虑的重要因素&#xff0c;并且介绍阿里达摩院MindOpt优化求解器在这些因素下的表现。 ⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇…

【Linux】Centos7安装MySql

【Linux】Centos7安装MySql 下载 MySQL 官网下载 MySQL&#xff0c;用的是 CentOS7.9 所以选择红帽系统 https://downloads.mysql.com/archives/community/ 安装 使用rz命令上传 MySQL tar # 创建 MySQL 解压目录 [rootlocalhost /]# mkdir /usr/local/mysql# 解压 [rootloca…

【漏洞复现】懒人网址导航页 search.html SQL注入漏洞

0x01 产品简介 赖人网址导航系统是一种智能化的网址导航平台&#xff0c;旨在帮助用户快速找到所需的网址和资源。该系统提供了智能化的网址搜索和推荐功能&#xff0c;能够根据用户的搜索习惯和偏好推荐相关的网址和资源。同时&#xff0c;系统还提供了网址分类、网址收藏和网…