【数据可视化01】matplotlib实例介绍1

目录

  • 一、引言
  • 二、实例介绍
      • 1.柱状图
        • 1)简单柱状图
        • 2)堆叠柱状图
      • 2.线条形式
      • 3.折线图(多子图)
      • 4.散点图
      • 5.水平和垂直线条
      • 6.饼状图
        • 1)饼状图
        • 2)“条形饼”图

一、引言

  matplotlib是一个用于绘制数据可视化的Python库。它可以创建各种静态、动态、交互式的图形,用于展示数据的分布、关系、趋势等。matplotlib提供了简单且灵活的API,使得用户能够轻松地根据自己的需求创建各种类型的图表。
  matplotlib提供了多种绘图风格和图表类型,包括线图、散点图、柱状图、饼图、等高线图等。用户可以通过简单的命令来设置图表的标题、轴标签、图例等,还可以调整图表的大小、颜色、线型等。matplotlib还支持绘制3D图表和地图,并提供了丰富的图表样式和色彩主题。
  matplotlib还与其他Python库紧密集成,如NumPy、pandas和scipy等,使得用户可以方便地在数据分析和科学计算的上下文中使用matplotlib绘制图表。此外,matplotlib还具有良好的文档和社区支持,用户可以轻松地找到大量示例代码和解决方案。
  总之,matplotlib是一个功能强大、易于使用且高度可定制的数据可视化库,适用于各种数据分析和科学计算任务。无论是初学者还是专业人士,都可以借助matplotlib轻松地将数据可视化,从而更好地理解和传达数据。

在这里插入图片描述

二、实例介绍

  在matplotlib中,常用的图形类型包括:

  1. 折线图(Line plot):用于展示数据随时间或其他连续变量发生变化的趋势。
  2. 散点图(Scatter plot):用于展示两个变量之间的关系,每个数据点用一个点表示。
  3. 柱状图(Bar plot):用于展示类别型变量的频次或总数之间的比较。
  4. 直方图(Histogram):用于展示连续变量的分布情况,将数据分成若干个区间,并计算每个区间中的数据个数或百分比。
  5. 饼图(Pie chart):用于展示类别型变量的占比情况,每个类别用扇形的面积表示。
  6. 箱线图(Box plot):用于展示连续变量的分布情况、异常值和离群点。
  7. 热力图(Heatmap):用于展示两个类别型变量之间的关系,通过颜色深浅来表示不同数值的大小。
  8. 3D图(3D plot):用于展示三维数据的分布情况,可以通过不同颜色或形状来表示不同数值或类别。
  9. 框图(Bar chart):用于展示类别型变量的数量或总数之间的比较,类似于柱状图,但可以包含多个类别变量的比较。

  以上只是常用的一些图形类型,matplotlib还提供了更多的图形类型和样式选择,可以根据具体需求选择合适的图形。下面介绍集中常用的图形绘制方法。

1.柱状图

1)简单柱状图

  这个示例展示了如何使用柱状图的颜色和标签参数来控制柱状图的颜色和图例条目。注意,前面带有下划线的标签不会显示在图例中。

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fruits = ['apple', 'blueberry', 'cherry', 'orange']
counts = [40, 100, 30, 55]
bar_labels = ['red', 'blue', '_red', 'orange']
bar_colors = ['tab:red', 'tab:blue', 'tab:red', 'tab:orange']
ax.bar(fruits, counts, label=bar_labels, color=bar_colors)
ax.set_ylabel('fruit supply')
ax.set_title('Fruit supply by kind and color')
ax.legend(title='Fruit color')
plt.show()

在这里插入图片描述

2)堆叠柱状图

  这是一个使用柱状图创建堆叠条形图的示例。

import matplotlib.pyplot as plt
import numpy as np

# data from https://allisonhorst.github.io/palmerpenguins/

species = (
    "Adelie\n $\\mu=$3700.66g",
    "Chinstrap\n $\\mu=$3733.09g",
    "Gentoo\n $\\mu=5076.02g$",
)
weight_counts = {
    "Below": np.array([70, 31, 58]),
    "Above": np.array([82, 37, 66]),
}
width = 0.5

fig, ax = plt.subplots()
bottom = np.zeros(3)

for boolean, weight_count in weight_counts.items():
    p = ax.bar(species, weight_count, width, label=boolean, bottom=bottom)
    bottom += weight_count

ax.set_title("Number of penguins with above average body mass")
ax.legend(loc="upper right")

plt.show()

在这里插入图片描述

2.线条形式

  简单的线条样式可以使用字符串 “solid”, “dotted”, “dashed” or “dashdot”.来定义。更精细的控制可以通过提供一个破折号元组(offset, (on_off_seq))来实现。例如,(0,(3,10,1,15))表示(3pt行,10pt空间,1pt行,15pt空间),没有偏移,而(5,(10,3))表示(10pt行,3pt空间),但跳过第一个5pt行。详见 Line2D.set_linestyle.
  注意: 破折号样式也可以通过Line2D配置。如自定义虚线样式和使用关键字破折号将破折号序列列表传递给property_cycle中的循环器所示。

import matplotlib.pyplot as plt
import numpy as np

linestyle_str = [
     ('solid', 'solid'),      # Same as (0, ()) or '-'
     ('dotted', 'dotted'),    # Same as (0, (1, 1)) or ':'
     ('dashed', 'dashed'),    # Same as '--'
     ('dashdot', 'dashdot')]  # Same as '-.'

linestyle_tuple = [
     ('loosely dotted',        (0, (1, 10))),
     ('dotted',                (0, (1, 1))),
     ('densely dotted',        (0, (1, 1))),
     ('long dash with offset', (5, (10, 3))),
     ('loosely dashed',        (0, (5, 10))),
     ('dashed',                (0, (5, 5))),
     ('densely dashed',        (0, (5, 1))),

     ('loosely dashdotted',    (0, (3, 10, 1, 10))),
     ('dashdotted',            (0, (3, 5, 1, 5))),
     ('densely dashdotted',    (0, (3, 1, 1, 1))),

     ('dashdotdotted',         (0, (3, 5, 1, 5, 1, 5))),
     ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))),
     ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))]


def plot_linestyles(ax, linestyles, title):
    X, Y = np.linspace(0, 100, 10), np.zeros(10)
    yticklabels = []

    for i, (name, linestyle) in enumerate(linestyles):
        ax.plot(X, Y+i, linestyle=linestyle, linewidth=1.5, color='black')
        yticklabels.append(name)

    ax.set_title(title)
    ax.set(ylim=(-0.5, len(linestyles)-0.5),
           yticks=np.arange(len(linestyles)),
           yticklabels=yticklabels)
    ax.tick_params(left=False, bottom=False, labelbottom=False)
    ax.spines[:].set_visible(False)

    # For each line style, add a text annotation with a small offset from
    # the reference point (0 in Axes coords, y tick value in Data coords).
    for i, (name, linestyle) in enumerate(linestyles):
        ax.annotate(repr(linestyle),
                    xy=(0.0, i), xycoords=ax.get_yaxis_transform(),
                    xytext=(-6, -12), textcoords='offset points',
                    color="blue", fontsize=8, ha="right", family="monospace")


fig, (ax0, ax1) = plt.subplots(2, 1, figsize=(10, 8), height_ratios=[1, 3])

plot_linestyles(ax0, linestyle_str[::-1], title='Named linestyles')
plot_linestyles(ax1, linestyle_tuple[::-1], title='Parametrized linestyles')

plt.tight_layout()
plt.show()

在这里插入图片描述

3.折线图(多子图)

  本案例介绍简单折线图,并以子图方式呈现。指定横纵坐标。

import matplotlib.pyplot as plt
import numpy as np

import matplotlib.gridspec as gridspec

fig = plt.figure(tight_layout=True)
gs = gridspec.GridSpec(2, 2)

ax = fig.add_subplot(gs[0, :])
ax.plot(np.arange(0, 1e6, 1000))
ax.set_ylabel('YLabel0')
ax.set_xlabel('XLabel0')

for i in range(2):
    ax = fig.add_subplot(gs[1, i])
    ax.plot(np.arange(1., 0., -0.1) * 2000., np.arange(1., 0., -0.1))
    ax.set_ylabel('YLabel1 %d' % i)
    ax.set_xlabel('XLabel1 %d' % i)
    if i == 0:
        ax.tick_params(axis='x', rotation=55)
fig.align_labels()  # same as fig.align_xlabels(); fig.align_ylabels()

plt.show()

在这里插入图片描述

4.散点图

  散点图的演示与不同的标记颜色和大小。

import matplotlib.pyplot as plt
import numpy as np

import matplotlib.cbook as cbook

# Load a numpy record array from yahoo csv data with fields date, open, high,
# low, close, volume, adj_close from the mpl-data/sample_data directory. The
# record array stores the date as an np.datetime64 with a day unit ('D') in
# the date column.
price_data = cbook.get_sample_data('goog.npz')['price_data']
price_data = price_data[-250:]  # get the most recent 250 trading days

delta1 = np.diff(price_data["adj_close"]) / price_data["adj_close"][:-1]

# Marker size in units of points^2
volume = (15 * price_data["volume"][:-2] / price_data["volume"][0])**2
close = 0.003 * price_data["close"][:-2] / 0.003 * price_data["open"][:-2]

fig, ax = plt.subplots()
ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)

ax.set_xlabel(r'$\Delta_i$', fontsize=15)
ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=15)
ax.set_title('Volume and percent change')

ax.grid(True)
fig.tight_layout()

plt.show()

在这里插入图片描述

5.水平和垂直线条

  这个例子展示了函数hlines和vlines。

import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)

t = np.arange(0.0, 5.0, 0.1)
s = np.exp(-t) + np.sin(2 * np.pi * t) + 1
nse = np.random.normal(0.0, 0.3, t.shape) * s

fig, (vax, hax) = plt.subplots(1, 2, figsize=(12, 6))

vax.plot(t, s + nse, '^')
vax.vlines(t, [0], s)
# By using ``transform=vax.get_xaxis_transform()`` the y coordinates are scaled
# such that 0 maps to the bottom of the axes and 1 to the top.
vax.vlines([1, 2], 0, 1, transform=vax.get_xaxis_transform(), colors='r')
vax.set_xlabel('time (s)')
vax.set_title('Vertical lines demo')

hax.plot(s + nse, t, '^')
hax.hlines(t, [0], s, lw=2)
hax.set_xlabel('time (s)')
hax.set_title('Horizontal lines demo')

plt.show()

在这里插入图片描述

6.饼状图

1)饼状图

  画一幅动物的饼状图,并在各部分贴上标签。要添加标签,将标签列表传递给labels参数

import matplotlib.pyplot as plt

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]

fig, ax = plt.subplots()
ax.pie(sizes, labels=labels)

在这里插入图片描述

2)“条形饼”图

  制作一个“条形饼”图,其中饼的第一个部分被“分解”成一个条形图,其中进一步细分了该部分的特征。该示例演示了使用具有多组轴的图形,并使用轴补丁列表添加两个ConnectionPatches以链接子图。

import matplotlib.pyplot as plt
import numpy as np

from matplotlib.patches import ConnectionPatch

# make figure and assign axis objects
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 5))
fig.subplots_adjust(wspace=0)

# pie chart parameters
overall_ratios = [.27, .56, .17]
labels = ['Approve', 'Disapprove', 'Undecided']
explode = [0.1, 0, 0]
# rotate so that first wedge is split by the x-axis
angle = -180 * overall_ratios[0]
wedges, *_ = ax1.pie(overall_ratios, autopct='%1.1f%%', startangle=angle,
                     labels=labels, explode=explode)

# bar chart parameters
age_ratios = [.33, .54, .07, .06]
age_labels = ['Under 35', '35-49', '50-65', 'Over 65']
bottom = 1
width = .2

# Adding from the top matches the legend.
for j, (height, label) in enumerate(reversed([*zip(age_ratios, age_labels)])):
    bottom -= height
    bc = ax2.bar(0, height, width, bottom=bottom, color='C0', label=label,
                 alpha=0.1 + 0.25 * j)
    ax2.bar_label(bc, labels=[f"{height:.0%}"], label_type='center')

ax2.set_title('Age of approvers')
ax2.legend()
ax2.axis('off')
ax2.set_xlim(- 2.5 * width, 2.5 * width)

# use ConnectionPatch to draw lines between the two plots
theta1, theta2 = wedges[0].theta1, wedges[0].theta2
center, r = wedges[0].center, wedges[0].r
bar_height = sum(age_ratios)

# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = r * np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData,
                      xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)

# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = r * np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData,
                      xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)

plt.show()

在这里插入图片描述
E N D ! \color{#4285f4}{\mathbf{E}}\color{#ea4335}{\mathbf{N}}\color{#fbbc05}{\mathbf{D}}\color{#4285f4}{\mathbf{!}} END!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/621842.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java并发编程:用户态、内核态、cache line和CPU缓存一致性协议

文章目录 一、介绍二、java中那些操作使用了内核态三、cache line的概念四、CPU缓存一致性协议 一、介绍 用户态和内核态是操作系统的两种运行状态,它们分别对应于不同的权限级别和访问能力。 用户态(User Mode):这是应用程序运…

volatile详解、原理

文章目录 一、Volatile的定义和作用1.1 Volatile简介1.2 Volatile作用 二、并发编程中的三个问题:可见性、原子性、有序性二、Java内存模型(JMM)三、volatile变量的特性3.1 线程可见性3.2 禁止重排序禁止重排序原理禁止重排序举例 3.3 volati…

知乎知+广告推广该如何做?怎么收费?

知乎作为一个汇聚高质量用户群体的知识分享平台,成为了众多品牌和产品推广的优选之地。特别是知乎的“知”广告推广服务,以其精准定向、内容原生的特点,深受广告主青睐。 一、知乎知广告推广基础 1. 什么是知乎知? 知是知乎官方…

Java入门基础学习笔记11——关键字和标识符

1、关键字 关键字是java中已经被赋予特定意义的,有特殊作用的一些单词,不可以把这些单词作为标识符来使用。 注意:关键字是java用了的,我们就不能用来作为:类名、变量名、否则会报错。 标识符: 标识符就是…

RAG应用中的路由模式

依据的用户查询意图在 RAG 应用程序使用“路由控制模式”可以帮助我们创建更强大的 RAG 应用程序。我们通常希望用户能够访问的数据可以来自各种来源,如报告、文档、图片、数据库和第三方系统。 对于基于业务的 RAG 应用程序,我们可能还希望用户能够与其它业务系统进行交互,…

Linux 中 alarm 函数详解

目录 简介函数原型函数参数返回值使用示例设置 3 秒闹钟修改闹钟与取消闹钟设置 1 秒周期定时器 更多内容 简介 alarm 函数的功能是设置一个闹钟(定时器),当闹钟时间到时,内核会向当前进程发送一个 SIGALRM 信号。 打开 Linux 终…

汇昌联信电商:拼多多新手怎么做店铺的免费流量会慢慢起来?

在拼多多上开店,新手们往往面临着如何吸引免费流量的挑战。毕竟,流量是店铺生存和发展的血脉,没有流量,就没有销量,店铺也就失去了生命力。那么,作为拼多多新手,如何做才能让店铺的免费流量慢慢…

Python Socket

一、服务端 from socket import *def print_hi(name):print(fHi, {name})# 允许所有ip连接IP 0.0.0.0# 端口PORT 8003# 定义一次从socket缓冲区读入512个字节数据BUFFER_LEN 512# 实例化socket对象 listenSocket 用来监听的socketlistenSocket socket(AF_INET, SOCK_STREA…

有哪些网络兼职适合大学生参与?揭秘几个简单又实用的兼职机会

有哪些网络兼职适合大学生参与?揭秘几个简单又实用的兼职机会 对于大学生而言,除了专注于学业,利用空余时间参与一些网络兼职,不仅能锻炼个人技能,还能为未来的职业生涯积累宝贵的经验。想象一下,步入社会…

基于SSM的“基于协同过滤的在线通用旅游平台网站”的设计与实现(源码+数据库+文档)

基于SSM的“基于协同过滤的在线通用旅游平台网站”的设计与实现(源码数据库文档) 开发语言:Java 数据库:MySQL 技术:SSM 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统主界面 景点信息界面 后台界面 部分源码…

SSH 免密登录,设置好仍然需要密码登录解决方法

说明: ssh秘钥登录设置好了,但是登录的时候依然需要提供密码 查看系统安全日志,定位问题 sudo cat /var/log/auth.log或者 sudo cat /var/log/secure找到下面的信息 Authentication refused: bad ownership or modes...(网上的…

STM: SpatioTemporal and Motion Encoding for Action Recognition 论文阅读

STM: SpatioTemporal and Motion Encoding for Action Recognition 论文阅读 Abstract1. Introduction2. Related Works3. Approach3.1. Channel-wise SpatioTemporal Module3.2. Channel-wise Motion Module3.3. STM Network 4. Experiments5. Conclusion 文章信息&#xff1a…

3.使用uView让tabbar更优雅

文章目录 1. 使用uView让tabbar更优雅1.1. 怎么才优雅?1.2. uView的tabbar合适吗?1.3. 引入项目过程1.3.1. 修改pages.json1.3.2. 把demo里面的pages先拷贝过来1.3.3. 引入tabbar的图片1.3.4. 运行 1.4. 我们自己的项目适配 1. 使用uView让tabbar更优雅 …

深入浅出:ConcurrentLinkedQueue源码分析与实战

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一…

【适用全主题】WordPress原创插件:弹窗通知插件 支持内容自定义

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 适用于所有WordPress主题的弹窗插件 一款WordPress原创插件:弹窗通知插件 支持内容自定义 二、效果展示 1.部分代码 代码如下(示例)&#xff1…

4.uniapp+vue3项目使用vuex

文章目录 1. uniappvue3项目使用vuex1.1. main.js引入store1.2. 创建store/index.js1.3. 项目中引用1.4. 开始解决实际问题1.5. vuex和storage的区别 1. uniappvue3项目使用vuex 这篇文章,既是使用的教程,也是用来解决一个实际问题:uView自定…

Python爬虫入门:网络世界的宝藏猎人

今天阿佑将带你踏上Python的肩膀,成为一名网络世界的宝藏猎人! 文章目录 1. 引言1.1 简述Python在爬虫领域的地位1.2 阐明学习网络基础对爬虫的重要性 2. 背景介绍2.1 Python语言的流行与适用场景2.2 网络通信基础概念及其在数据抓取中的角色 3. Python基…

Java面试八股之String s = “String“;和String s = new String(“String“);有什么区别

Java中String s "String";和String s new String("String");有什么区别 字符串字面量("String"): 常量池:使用字面量方式创建字符串时,Java虚拟机(JVM)会在运…

WWW服务器搭建(1)——HTTP协议原理篇

目录 一、WWW的相关概念 1.1 WWW的定义 1.2 超文本标记语言HTML 1.3 统一资源定位符URL 1.4 超文本传输协议HTTP 二、HTTP协议工作过程 2.1 DNS解析 2.2 TCP连接过程 2.3 HTTP 请求与响应 2.4 TCP连接断开 三、HTTP请求报文格式 3.1 请求行 3.2 请求头 3.3 空行 …

全国防灾减灾日主题活动投稿我可算找对了投稿方法

作为一名社区公众人员,我深知对外信息宣传的重要性。特别是在全国防灾减灾日这样的特殊时刻,我们不仅要向居民普及防灾减灾知识,还要通过媒体将社区的活动和成果展示给更多人。然而,在投稿的过程中,我最初却遭遇了诸多挑战。 起初,我采用传统的邮箱投稿方式,将精心撰写的稿件发…