【iOS】RunLoop详解(二)

RunLoop详解(二)

    • RunLoop 的概念
    • RunLoop 与线程的关系
    • Runloop
    • Runloop与线程的关系
    • RunLoop对外的接口
    • Runloop的Mode
      • 举例说明
      • 小结
    • RunLoop 的内部逻辑
    • RunLoop的底层实现
    • 苹果用RunLoop实现的功能
      • AutoreleasePool
      • 事件响应
      • 手势识别
      • 界面更新
      • 定时器
      • PerformSelector
      • 关于GCD
      • 关于网络请求
    • RunLoop 的实际应用举例
      • AFNetWorking

前言:本篇总结主要从RunLoop的源码出发进行讲解

RunLoop 的概念

一般来讲,一个线程一次只能执行一个任务,执行完成后线程就会退出。如果我们需要一个机制,让线程能随时处理事件但并不退出,通常的代码逻辑是这样的:

function loop() {
    initialize();
    do {
        var message = get_next_message();
        process_message(message);
    } while (message != quit);
}

这种模型通常被称作 Event Loop。 Event Loop 在很多系统和框架里都有实现,比如 Node.js 的事件处理,比如 Windows 程序的消息循环,再比如 OSX/iOS 里的 RunLoop。实现这种模型的关键点在于:如何管理事件/消息,如何让线程在没有处理消息时休眠以避免资源占用、在有消息到来时立刻被唤醒。

所以,RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行上面 Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 “接受消息->等待->处理” 的循环中,直到这个循环结束(比如传入 quit 的消息),函数返回。

OSX/iOS 系统中,提供了两个这样的对象:NSRunLoopCFRunLoopRef
CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是 线程安全 的。
NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全 的。

RunLoop 与线程的关系

Runloop

特点:

  • Runloop 是一个事件处理循环,不断地从事件队列中取出事件或消息,并分发给对应的处理方法。
  • Runloop 可以使线程进入休眠状态,待有事件到来时再唤醒执行,节省了 CPU 资源。
  • 主线程的 Runloop 是默认开启的,但其他线程的 Runloop 需要手动创建和启动。

Runloop与线程的关系

  • 线程和 RunLoop 之间是一一对应的,其关系是保存在一个全局的 Dictionary 里
  • 线程刚创建时并没有 RunLoop,如果你不主动获取,那它一直都不会有
  • RunLoop 的创建是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时
  • 你只能在一个线程的内部获取其 RunLoop(主线程除外)。

接下来我们通过源码进行详细讲解:

首先,iOS 开发中能遇到两个线程对象: pthread_t 和 NSThread。过去苹果有份文档标明了 NSThread 只是 pthread_t 的封装,但那份文档已经失效了,现在它们也有可能都是直接包装自最底层的 mach thread。苹果并没有提供这两个对象相互转换的接口,但不管怎么样,可以肯定的是 pthread_t 和 NSThread 是一一对应的
比如,你可以通过 pthread_main_thread_np() 或 [NSThread mainThread] 来获取主线程;也可以通过 pthread_self() 或 [NSThread currentThread] 来获取当前线程。CFRunLoop 是基于 pthread 来管理的。

苹果不允许直接创建 RunLoop,它只提供了两个自动获取的函数: CFRunLoopGetMain() 和
CFRunLoopGetCurrent()。 这两个函数内部的逻辑大概是下面这样:

/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
static CFMutableDictionaryRef loopsDic; //从这里可以看出,每个线程都有一个对应的runloop
/// 访问 loopsDic 时的锁
static CFSpinLock_t loopsLock;
 
/// 获取一个 pthread 对应的 RunLoop。
CFRunLoopRef _CFRunLoopGet(pthread_t thread) {
    OSSpinLockLock(&loopsLock); //如果锁已经被其他线程持有,当前线程将会在忙等状态下自旋,直到获取到锁为止。

	//第一次进入的时候才会初始化
    if (!loopsDic) {
        // 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
        loopsDic = CFDictionaryCreateMutable(); 
        CFRunLoopRef mainLoop = _CFRunLoopCreate();
        CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop);
    } //这里可以看出,key是线程,value是runloop
    
    // 直接从 Dictionary 里获取。
    // 这里就是我们要获取的传入线程的runloop,如果获取不到,就创建一个再获取
    CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread));
    
    if (!loop) {
        /// 取不到时,创建一个
        loop = _CFRunLoopCreate();
        CFDictionarySetValue(loopsDic, thread, loop);
        /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
        _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop);
    }
    
    OSSpinLockUnLock(&loopsLock);
    return loop;
}
 
//通过上面的方法,获取主线程的runloop
CFRunLoopRef CFRunLoopGetMain() {
    return _CFRunLoopGet(pthread_main_thread_np());
}
//通过上面的方法,获取当前线程的runloop
CFRunLoopRef CFRunLoopGetCurrent() {
    return _CFRunLoopGet(pthread_self());
}

注意:读CF系列的属性名时,不要被吓到,把前面的CF和后面的Ref删除,中间的直译就说它的意思

  • 整个代码的逻辑,首先,一定要保证mainThread有runloop,所以上来先出实话全局dic,这个dic中,key是线程,value是runloop
  • 然后尝试获取传入的thread对应的runloop,如果有就返回了,如果没有,创建一个再返回
  • 整个获取(创建再获取)的过程,是在加锁的情况下进行的,即保证了线程安全

RunLoop对外的接口

在 CoreFoundation 里面关于 RunLoop 有5个类:
(注意把CF和Ref去掉再看含义)

  • CFRunLoopRef – Runloop
  • CFRunLoopModeRef – Mode
  • CFRunLoopSourceRef – 数据源
  • CFRunLoopTimerRef – 定时源
  • CFRunLoopObserverRef – 观察者

其中 CFRunLoopModeRef 类并没有对外暴露,只是通过 CFRunLoopRef 的接口进行了封装。他们的关系如下:
Alt
这张图对理解这诸多概念的关系很重要!!!

一个 RunLoop 包含若干个 Mode,每个 Mode 又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode。如果需要切换 Mode,只能退出 Loop,再重新指定一个 Mode 进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。

CFRunLoopSourceRef 是事件产生的地方。Source有两个版本:Source0Source1

  • Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
  • Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。

CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。

CFRunLoopObserverRe 是观察者,每个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:

typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
    kCFRunLoopEntry         = (1UL << 0), // 即将进入Loop
    kCFRunLoopBeforeTimers  = (1UL << 1), // 即将处理 Timer
    kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
    kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
    kCFRunLoopAfterWaiting  = (1UL << 6), // 刚从休眠中唤醒
    kCFRunLoopExit          = (1UL << 7), // 即将退出Loop
};

上面的 Source/Timer/Observer 被统称为 mode item,一个 item 可以被同时加入多个 mode。但一个 item 被重复加入同一个 mode 时是不会有效果的。如果一个 mode 中一个 item 都没有,则 RunLoop 会直接退出,不进入循环。

Runloop的Mode

CFRunLoopMode 和 CFRunLoop 的结构大致如下:

struct __CFRunLoopMode {
    CFStringRef _name;            // Mode Name, 例如 @"kCFRunLoopDefaultMode"
    CFMutableSetRef _sources0;    // Set
    CFMutableSetRef _sources1;    // Set
    CFMutableArrayRef _observers; // Array
    CFMutableArrayRef _timers;    // Array
    ...
};
 
struct __CFRunLoop {
    CFMutableSetRef _commonModes;     // Set
    CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
    CFRunLoopModeRef _currentMode;    // Current Runloop Mode
    CFMutableSetRef _modes;           // Set
    ...
};

这里有个概念叫 “CommonModes”:一个 Mode 可以将自己标记为”Common”属性(通过将其 ModeName 添加到 RunLoop 的 “commonModes” 中)。每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具有 “Common” 标记的所有Mode里。

应用场景举例:主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。这两个 Mode 都已经被标记为”Common”属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。

有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 “commonModeItems” 中。”commonModeItems” 被 RunLoop 自动更新到所有具有”Common”属性的 Mode 里去。

CFRunLoop对外暴露的管理 Mode 接口只有下面2个:

  • CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
  • CFRunLoopRunInMode(CFStringRef modeName, …);

Mode 暴露的管理 mode item 的接口有下面几个:

  • CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
  • CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
  • CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
  • CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
  • CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
  • CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);

你只能通过 mode name 来操作内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的 mode 只能增加不能删除。

苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。

同时苹果还提供了一个操作 Common 标记的 字符串 :kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode 为 “Common”。使用时注意区分这个字符串和其他 mode name。

举例说明

假设我们有一个任务或定时器需要在 RunLoop 的多个模式下执行,可以使用 kCFRunLoopCommonModes 来标记这个任务或定时器,使其可以跨多个模式执行。

示例 1:使用 Timer 在 Common Mode 下执行

// 创建一个定时器
NSTimer *timer = [NSTimer timerWithTimeInterval:1.0
                                         target:self
                                       selector:@selector(timerFired:)
                                       userInfo:nil
                                        repeats:YES];

// 将定时器加入 RunLoop 的 Common Mode 中
[[NSRunLoop mainRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];

// 定时器触发时调用的方法
- (void)timerFired:(NSTimer *)timer {
    NSLog(@"Timer fired!");
}

在上面的示例中,我们创建了一个重复执行的定时器 timer,并将它添加到主线程的 RunLoop 的 Common Mode 中(通过 NSRunLoopCommonModes)。这样做的好处是,即使主线程的 RunLoop 切换到其他 Mode(例如滚动模式),定时器仍然会继续执行,因为它被加入了 Common Mode。

示例 2:自定义事件源跨多个 Mode 执行

// 创建自定义事件源
CFRunLoopSourceContext context = {0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
CFRunLoopSourceRef customSource = CFRunLoopSourceCreate(NULL, 0, &context);

// 将自定义事件源加入 RunLoop 的 Common Mode 中
CFRunLoopAddSource(CFRunLoopGetMain(), customSource, kCFRunLoopCommonModes);

// 处理自定义事件源的回调函数
void customSourceCallback(void *info) {
    NSLog(@"Custom source triggered!");
}

// 设置自定义事件源的回调函数
context.perform = &customSourceCallback;

在这个示例中,我们创建了一个自定义的事件源 customSource,并将其加入了主线程的 RunLoop 的 Common Mode 中(通过 kCFRunLoopCommonModes)。这样一来,无论主线程的 RunLoop 处于何种模式,都可以响应和处理这个自定义事件源的事件。

小结

使用 kCFRunLoopCommonModes(或 NSRunLoopCommonModes)可以方便地将任务或事件跨越多个 RunLoop Mode 进行执行,保证特定任务的及时处理和响应,提高应用程序的灵活性和性能。注意,Common Mode 与其他自定义的 RunLoop Mode 是不同的,它是一个特殊的共享模式,可以跨越多个自定义 Mode 运行任务或事件。

RunLoop 的内部逻辑

根据苹果官方文档里的说明,RunLoop 内部的逻辑大致如下:
Alt
其内部代码整理如下 (太长了不想看可以直接跳过去,后面会有说明):

/// 用DefaultMode启动
void CFRunLoopRun(void) {
    CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
}
 
/// 用指定的Mode启动,允许设置RunLoop超时时间
int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
    return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
 
/// RunLoop的实现
int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
    
    /// 首先根据modeName找到对应mode
    CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
    /// 如果mode里没有source/timer/observer, 直接返回。
    if (__CFRunLoopModeIsEmpty(currentMode)) return;
    
    /// 1. 通知 Observers: RunLoop 即将进入 loop。
    __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
    
    /// 内部函数,进入loop
    __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
        
        Boolean sourceHandledThisLoop = NO;
        int retVal = 0;
        do {
 
            /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
            /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
            /// 执行被加入的block
            __CFRunLoopDoBlocks(runloop, currentMode);
            
            /// 4. RunLoop 触发 Source0 (非port) 回调。
            sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
            /// 执行被加入的block
            __CFRunLoopDoBlocks(runloop, currentMode);
 
            /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
            if (__Source0DidDispatchPortLastTime) {
                Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
                if (hasMsg) goto handle_msg;
            }
            
            /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
            if (!sourceHandledThisLoop) {
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
            }
            
            /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
            /// • 一个基于 port 的Source 的事件。
            /// • 一个 Timer 到时间了
            /// • RunLoop 自身的超时时间到了
            /// • 被其他什么调用者手动唤醒
            __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
                mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
            }
 
            /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
            
            /// 收到消息,处理消息。
            handle_msg:
 
            /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
            if (msg_is_timer) {
                __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
            } 
 
            /// 9.2 如果有dispatch到main_queue的block,执行block。
            else if (msg_is_dispatch) {
                __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
            } 
 
            /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
            else {
                CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
                sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
                if (sourceHandledThisLoop) {
                    mach_msg(reply, MACH_SEND_MSG, reply);
                }
            }
            
            /// 执行加入到Loop的block
            __CFRunLoopDoBlocks(runloop, currentMode);
            
 
            if (sourceHandledThisLoop && stopAfterHandle) {
                /// 进入loop时参数说处理完事件就返回。
                retVal = kCFRunLoopRunHandledSource;
            } else if (timeout) {
                /// 超出传入参数标记的超时时间了
                retVal = kCFRunLoopRunTimedOut;
            } else if (__CFRunLoopIsStopped(runloop)) {
                /// 被外部调用者强制停止了
                retVal = kCFRunLoopRunStopped;
            } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
                /// source/timer/observer一个都没有了
                retVal = kCFRunLoopRunFinished;
            }
            
            /// 如果没超时,mode里没空,loop也没被停止,那继续loop。
        } while (retVal == 0);
    }
    
    /// 10. 通知 Observers: RunLoop 即将退出。
    __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
}

可以看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。

RunLoop的底层实现

从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。
Alt
苹果官方将整个系统大致划分为上述4个层次:

  • 应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
  • 应用框架层即开发人员接触到的 Cocoa 等框架。
  • 核心框架层包括各种核心框架、OpenGL 等内容。
  • Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。

我们在深入看一下 Darwin 这个核心的架构:
Alt
其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。

  • XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
  • BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
  • IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。

Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为”对象”。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。”消息”是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

Mach 的消息定义是在 <mach/message.h> 头文件的,很简单:

typedef struct {
  mach_msg_header_t header;
  mach_msg_body_t body;
} mach_msg_base_t;
 
typedef struct {
  mach_msg_bits_t msgh_bits;
  mach_msg_size_t msgh_size;
  mach_port_t msgh_remote_port;
  mach_port_t msgh_local_port;
  mach_port_name_t msgh_voucher_port;
  mach_msg_id_t msgh_id;
} mach_msg_header_t;

一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,
发送和接受消息是通过同一个 API 进行的(就是传说中的 mach_msg()),其 option 标记了消息传递的方向:

mach_msg_return_t mach_msg(
			mach_msg_header_t *msg,
			mach_msg_option_t option,
			mach_msg_size_t send_size,
			mach_msg_size_t rcv_size,
			mach_port_name_t rcv_name,
			mach_msg_timeout_t timeout,
			mach_port_name_t notify);

为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:
Alt
学过操作系统或者系统编程的通过对这张图应该能很容易理解。
这些概念可以参考维基百科: System_call、Trap_(computing)。

RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

苹果用RunLoop实现的功能

首先我们可以看一下 App 启动后 RunLoop 的状态:

CFRunLoop {
    current mode = kCFRunLoopDefaultMode
    common modes = {
        UITrackingRunLoopMode
        kCFRunLoopDefaultMode
    }
 
    common mode items = {
 
        // source0 (manual)
        CFRunLoopSource {order =-1, {
            callout = _UIApplicationHandleEventQueue}}
        CFRunLoopSource {order =-1, {
            callout = PurpleEventSignalCallback }}
        CFRunLoopSource {order = 0, {
            callout = FBSSerialQueueRunLoopSourceHandler}}
 
        // source1 (mach port)
        CFRunLoopSource {order = 0,  {port = 17923}}
        CFRunLoopSource {order = 0,  {port = 12039}}
        CFRunLoopSource {order = 0,  {port = 16647}}
        CFRunLoopSource {order =-1, {
            callout = PurpleEventCallback}}
        CFRunLoopSource {order = 0, {port = 2407,
            callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
        CFRunLoopSource {order = 0, {port = 1c03,
            callout = __IOHIDEventSystemClientAvailabilityCallback}}
        CFRunLoopSource {order = 0, {port = 1b03,
            callout = __IOHIDEventSystemClientQueueCallback}}
        CFRunLoopSource {order = 1, {port = 1903,
            callout = __IOMIGMachPortPortCallback}}
 
        // Ovserver
        CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
            callout = _wrapRunLoopWithAutoreleasePoolHandler}
        CFRunLoopObserver {order = 0, activities = 0x20,          // BeforeWaiting
            callout = _UIGestureRecognizerUpdateObserver}
        CFRunLoopObserver {order = 1999000, activities = 0xa0,    // BeforeWaiting | Exit
            callout = _afterCACommitHandler}
        CFRunLoopObserver {order = 2000000, activities = 0xa0,    // BeforeWaiting | Exit
            callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
        CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
            callout = _wrapRunLoopWithAutoreleasePoolHandler}
 
        // Timer
        CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
            next fire date = 453098071 (-4421.76019 @ 96223387169499),
            callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
    },
 
    modes = {
        CFRunLoopMode  {
            sources0 =  { /* same as 'common mode items' */ },
            sources1 =  { /* same as 'common mode items' */ },
            observers = { /* same as 'common mode items' */ },
            timers =    { /* same as 'common mode items' */ },
        },
 
        CFRunLoopMode  {
            sources0 =  { /* same as 'common mode items' */ },
            sources1 =  { /* same as 'common mode items' */ },
            observers = { /* same as 'common mode items' */ },
            timers =    { /* same as 'common mode items' */ },
        },
 
        CFRunLoopMode  {
            sources0 = {
                CFRunLoopSource {order = 0, {
                    callout = FBSSerialQueueRunLoopSourceHandler}}
            },
            sources1 = (null),
            observers = {
                CFRunLoopObserver >{activities = 0xa0, order = 2000000,
                    callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
            )},
            timers = (null),
        },
 
        CFRunLoopMode  {
            sources0 = {
                CFRunLoopSource {order = -1, {
                    callout = PurpleEventSignalCallback}}
            },
            sources1 = {
                CFRunLoopSource {order = -1, {
                    callout = PurpleEventCallback}}
            },
            observers = (null),
            timers = (null),
        },
        
        CFRunLoopMode  {
            sources0 = (null),
            sources1 = (null),
            observers = (null),
            timers = (null),
        }
    }
}

可以看到,系统默认注册了5个Mode:
1. kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。
2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。

3. UIInitializationRunLoopMode: 在刚启动 App 时进入的第一个 Mode,启动完成后就不再使用。
4. GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。
5. kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。

你可以在这里看到更多的苹果内部的 Mode,但那些 Mode 在开发中就很难遇到了。

当 RunLoop 进行回调时,一般都是通过一个很长的函数调用出去 (call out), 当你在你的代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:

{
    /// 1. 通知Observers,即将进入RunLoop
    /// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
    __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
    do {
 
        /// 2. 通知 Observers: 即将触发 Timer 回调。
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
        /// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
        __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
 
        /// 4. 触发 Source0 (非基于port的) 回调。
        __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
        __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
 
        /// 6. 通知Observers,即将进入休眠
        /// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
 
        /// 7. sleep to wait msg.
        mach_msg() -> mach_msg_trap();
        
 
        /// 8. 通知Observers,线程被唤醒
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
 
        /// 9. 如果是被Timer唤醒的,回调Timer
        __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
 
        /// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
        __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
 
        /// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
        __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
 
 
    } while (...);
 
    /// 10. 通知Observers,即将退出RunLoop
    /// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
    __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
}

AutoreleasePool

  • App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。

  • 第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

  • 第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

  • 在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。

事件响应

苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。

当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。

_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

手势识别

当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。

当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

界面更新

当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。

苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。

_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
    QuartzCore:CA::Transaction::observer_callback:
        CA::Transaction::commit();
            CA::Context::commit_transaction();
                CA::Layer::layout_and_display_if_needed();
                    CA::Layer::layout_if_needed();
                        [CALayer layoutSublayers];
                            [UIView layoutSubviews];
                    CA::Layer::display_if_needed();
                        [CALayer display];
                            [UIView drawRect];

定时器

NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer 有个属性叫做 Tolerance (宽容度),标示了当时间点到后,容许有多少最大误差。

如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。

CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。Facebook 开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了 RunLoop,这个稍后我会再单独写一页博客来分析。

PerformSelector

当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。

当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。

关于GCD

实际上 RunLoop 底层也会用到 GCD 的东西,同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。

当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其他线程仍然是由 libDispatch 处理的。

关于网络请求

iOS 中,关于网络请求的接口自下至上有如下几层:

CFSocket
CFNetwork ->ASIHttpRequest
NSURLConnection ->AFNetworking
NSURLSession ->AFNetworking2, Alamofire

  • CFSocket 是最底层的接口,只负责 socket 通信。
  • CFNetwork 是基于 CFSocket 等接口的上层封装,ASIHttpRequest 工作于这一层。
  • NSURLConnection 是基于 CFNetwork 的更高层的封装,提供面向对象的接口,AFNetworking 工作于这一层。
  • NSURLSession 是 iOS7 中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工作于这一层。

下面主要介绍下 NSURLConnection 的工作过程。

通常使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,然后在其中的 DefaultMode 添加了4个 Source0 (即需要手动触发的Source)。CFMultiplexerSource 是负责各种 Delegate 回调的,CFHTTPCookieStorage 是处理各种 Cookie 的。

当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

Alt
NSURLConnectionLoader 中的 RunLoop 通过一些基于 mach port 的 Source 接收来自底层 CFSocket 的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource 等 Source0 发送通知,同时唤醒 Delegate 线程的 RunLoop 来让其处理这些通知。CFMultiplexerSource 会在 Delegate 线程的 RunLoop 对 Delegate 执行实际的回调。

RunLoop 的实际应用举例

AFNetWorking

AFURLConnectionOperation 这个类是基于 NSURLConnection 构建的,其希望能在后台线程接收 Delegate 回调。为此 AFNetworking 单独创建了一个线程,并在这个线程中启动了一个 RunLoop:

+ (void)networkRequestThreadEntryPoint:(id)__unused object {
    @autoreleasepool {
        [[NSThread currentThread] setName:@"AFNetworking"];
        NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
        [runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
        [runLoop run];
    }
}
 
+ (NSThread *)networkRequestThread {
    static NSThread *_networkRequestThread = nil;
    static dispatch_once_t oncePredicate;
    dispatch_once(&oncePredicate, ^{
        _networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
        [_networkRequestThread start];
    });
    return _networkRequestThread;
}

RunLoop 启动前内部必须要有至少一个 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先创建了一个新的 NSMachPort 添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port) 并在外部线程通过这个 port 发送消息到 loop 内;但此处添加 port 只是为了让 RunLoop 不至于退出,并没有用于实际的发送消息。

- (void)start {
    [self.lock lock];
    if ([self isCancelled]) {
        [self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
    } else if ([self isReady]) {
        self.state = AFOperationExecutingState;
        [self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
    }
    [self.lock unlock];
}

当需要这个后台线程执行任务时,AFNetworking 通过调用 [NSObject performSelector:onThread:…] 将这个任务扔到了后台线程的 RunLoop 中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/617205.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python经典案例爬取豆瓣Top250电影数据

随着网络数据的日益丰富&#xff0c;如何从海量的信息中快速、准确地提取出有价值的数据&#xff0c;成为了许多开发者和技术爱好者关注的焦点。在这个过程中&#xff0c;网络爬虫技术凭借其强大的数据获取能力&#xff0c;成为了数据分析和挖掘的重要工具。本文将通过一个经典…

[JNI]使用jni实现简单的Java调用本地C语言代码

[JNI]使用jni实现简单的Java调用本地C语言代码 JNI的解释 Java Native Interface&#xff0c;即Java本地接口。 在Java官方描述中为&#xff1a; The JNI is a native programming interface. It allows Java code that runs inside a Java Virtual Machine (VM) to interope…

day11-StreamFile

1.Stream流 1.1 体验Stream流 需求&#xff1a;按照下面的要求完成集合的创建和遍历 创建一个集合&#xff0c;存储多个字符串元素 把集合中所有以"杨"开头的元素存储到一个新的集合 把"杨"开头的集合中的长度为3的元素存储到一个新的集合 遍历上一步得到…

C++语言题库(三)—— PAT

目录 1. 打印点、圆、圆柱信息 2. 国际贸易统计 3. 设计一个类CRectangle 4. 定义一个时间类 5. 定义一个Date类 6. 定义一个Time类 7. 设计一个People类 8. 平均成绩 9. 计算若干个学生的总成绩及平均成绩 11. 使用面向对象的方法求长方形的周长 1. 打印点、圆、圆柱…

回溯算法精讲

原理 回溯&#xff0c;就和深度优先遍历&#xff08;DFS&#xff09;类似&#xff0c;属于先一层到底直至到终点&#xff0c;如果这条路径不对&#xff0c;则回退一下&#xff0c;再继续往下搜索。 抽象地说&#xff0c;解决一个回溯问题&#xff0c;实际上就是遍历一棵决策树…

【神经网络】输出层的设计

文章目录 前言一、恒等函数和softmax函数恒等函数softmax 函数python实现softmax函数 二、实现softmax函数时的注意事项函数优化python实现 三、softmax函数的特征计算神经网络的输出输出层的softmax函数可以省略“学习”和“推理”阶段 四、输出层的神经元数量 前言 神经网络…

Disk Map for Mac,让您的Mac更“轻”松

还在为Mac磁盘空间不足而烦恼吗&#xff1f;Disk Map for Mac来帮您轻松解决&#xff01;通过独特的TreeMap视觉显示技术&#xff0c;让您一眼就能看出哪些文件和文件夹占用了大量空间。只需简单几步操作&#xff0c;即可快速释放磁盘空间&#xff0c;让您的Mac更“轻”松。快来…

el-checkbox选中后的值为id,组件显示为label中文

直接上代码 方法一 <el-checkbox v-for"item in list" :key"item.id" :label"item.id">{{中文}} </el-checkbox> 方法二 <el-checkbox-group class"flex_check" v-model"rkStatusList" v-for"item…

prometheus、mysqld_exporter、node_export、Grafana安装配置

工具简介 Prometheus&#xff08;普罗米修斯&#xff09;&#xff1a;是一个开源的服务监控系统和时间序列数据库 mysqld_exporter&#xff1a; 用于监控 mysql 服务器的开源工具&#xff0c;它是由 Prometheus 社区维护的一个官方 Exporter。该工具通过连接到mysql 服务器并执…

EasyNmon服务器性能监控工具环境搭建

一、安装jdk环境 1、看我这篇博客 https://blog.csdn.net/weixin_54542209/article/details/138704468 二、下载最新easyNmon包 1、下载地址 https://github.com/mzky/easyNmon/releases wget https://github.com/mzky/easyNmon/releases/download/v1.9/easyNmon_AMD64.tar.…

openssl 生成证书步骤

本地测试RSA非对称加密功能时&#xff0c;需要用到签名证书。本文记录作者使用openssl本地生成证书的步骤&#xff0c;并没有深入研究openssl&#xff0c;难免会有错误&#xff0c;欢迎指出&#xff01;&#xff01;&#xff01; 生成证书标准流程&#xff1a; 1、生成私钥&am…

单位学校FM调频电台直放站系统

随着教育技术的不断发展&#xff0c;校园广播系统的建设已成为现代学校必不可少的一部分。作为传统有线广播的有效补充&#xff0c;基于无线电信号传输的 FM 调频电台在学校的使用日益广泛&#xff0c;尤其是在紧急通知、日常信息传播及教学辅助等方面发挥着重要作用。为了增强…

msvcp140dll怎么修复,分享5种有效的解决方法

MSVCP140.dll文件丢失这一现象究竟是何缘由&#xff0c;又会引发哪些令人头疼的问题呢&#xff1f;在探索这个问题的答案之前&#xff0c;我们先来深入了解这个神秘的DLL文件。MSVCP140.dll是Microsoft Visual C Redistributable Package的一部分&#xff0c;它扮演着至关重要的…

IP地址定位技术在网络安全中的作用

在当今数字化时代&#xff0c;网络安全已经成为企业、政府和个人面临的重要挑战之一。随着互联网的普及和网络攻击的增加&#xff0c;保护个人隐私和防止网络犯罪变得尤为重要。在这一背景下&#xff0c;IP地址定位技术作为网络安全的重要组成部分之一&#xff0c;发挥着关键作…

【Shell】shell编程之循环语句

目录 1.for循环 例题 2.while循环 例题 3.until循环 1.for循环 读取不同的变量值&#xff0c;用来逐个执行同一组命令 for 变量 in 取值列表 do 命令序列 done [rootlocalhost ~]# for i in 1 2 3 > do > echo "第 $i 次跳舞" > done 第 1 次跳舞 第 …

Redis经典问题:数据不一致

大家好,我是小米,今天我想和大家聊一聊Redis的一个经典问题——数据不一致。在使用Redis的过程中,你是否曾遇到过这样的问题?缓存和数据库中的数据不一致,可能导致应用程序的功能异常。下面,我将详细介绍数据不一致的原因,以及一些有效的解决方案。 什么是数据不一致 …

WordPress插件Plus WebP,可将jpg、png、bmp、gif图片转为WebP

现在很多浏览器和CDN都支持WebP格式的图片了&#xff0c;不过我们以前的WordPress网站使用的图片都是jpg、png、bmp、gif&#xff0c;那么应该如何将它们转换为WebP格式的图片呢&#xff1f;推荐安装这款Plus WebP插件&#xff0c;可以将上传到媒体库的图片转为WebP格式图片&am…

picoCTF-Web Exploitation-Trickster

Description I found a web app that can help process images: PNG images only! 这应该是个上传漏洞了&#xff0c;十几年没用过了&#xff0c;不知道思路是不是一样的&#xff0c;以前的思路是通过上传漏洞想办法上传一个木马&#xff0c;拿到webshell&#xff0c;今天试试看…

多线程-线程安全

目录 线程安全问题 加锁(synchronized) synchronized 使用方法 synchronized的其他使用方法 synchronized 重要特性(可重入的) 死锁的问题 对 2> 提出问题 对 3> 提出问题 解决死锁 对 2> 进行解答 对4> 进行解答 volatile 关键字 wait 和 notify (重要…

如何在沉浸式翻译浏览器插件中使用免费的DEEPLX和配置API接口

如何在浏览器插件沉浸式翻译中使用DEEPLX 如何配置免费的DEEPLX翻译功能如何打开PDF翻译功能如何解除翻译额度限制 如何配置免费的DEEPLX翻译功能 假设你已经在浏览器上安装了沉浸式翻译插件&#xff0c;但是不知道如何使用免费的DEEPLX功能 这里以EDGE浏览器为例&#xff0c;…