5 个遥遥领先的大模型 RAG 工具

想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。

在本文中,我们将介绍五大遥遥领先的 RAG 工具或库:LangChain、LlamaIndex、Haystack、RAGatouille 和 EmbedChain。

图片

LangChain

LangChain 是一个全面的开源框架,用于开发大型语言模型的应用程序。它将模块化和可扩展的架构与高级界面结合在一起,特别适用于构建检索增强生成(RAG)系统。

LangChain 允许轻松集成各种数据源,包括文档、数据库和API,这些数据源可以增强生成过程。

图片

官方:https://python.langchain.com/v0.1/docs/get_started/introduction/

主要功能

  • 文档加载器和检索器:

  • 从数据库、API和本地文件中获取相关上下文的数据。

  • 支持PDF、文本文件、网络抓取、SQL/NoSQL数据库等加载器。

  • 检索器包括 BM25、Chroma、FAISS、Elasticsearch、Pinecone等。

  • 提示工程:

  • 使用模板化结构创建动态提示。

  • 根据检索到的数据定制提示,以提供更好的上下文。

  • 内存管理:

  • 在交互中持久化上下文,实现会话式体验。

  • 与Chroma、Pinecone和FAISS等向量数据库集成。

LlamaIndex

LlamaIndex 是一个强大的库,专为构建检索增强生成(RAG)系统而设计,重点是针对大规模数据集的高效索引和检索。

利用向量相似性搜索和层次化索引等先进技术,LlamaIndex 实现了对相关信息的快速准确检索,增强了生成式语言模型的能力。

该库与流行的大型语言模型(LLMs)无缝集成,便于将检索到的数据整合到生成过程中,使其成为增强基于LLMs构建的应用程序智能和响应能力的强大工具。

图片

官方:https://docs.llamaindex.ai/en/stable/

主要功能

  • 索引类型:

  • 树形索引:使用分层结构进行高效的语义搜索,适用于涉及层次化数据的复杂查询。

  • 列表索引:对于较小的数据集,提供直接的顺序索引,允许快速的线性搜索。

  • 向量存储索引:将数据存储为密集向量,以实现快速的相似性搜索,非常适用于文档检索和推荐系统等应用。

  • 关键词表索引:使用映射表进行基于关键词的搜索,有助于根据特定术语或标签快速访问数据。

  • 文档加载器:

  • 支持从文件(TXT、PDF、DOC、CSV)、API、数据库(SQL/NoSQL)和网络抓取加载数据。

  • 检索优化:

  • 以最小的延迟高效检索相关数据。

  • 将嵌入模型(OpenAI、Hugging Face)与向量数据库的检索器(BM25、DPR、FAISS、Pinecone)相结合。

Haystack

Haystack 是由 Deepset 开发的开源NLP框架,专注于构建用于搜索和问答系统的RAG流水线。它提供了一套全面的工具和模块化的设计,允许开发灵活和可定制的RAG解决方案。

该框架包括用于文档检索、问答和生成的组件,支持各种检索方法,如Elasticsearch和FAISS。

此外,Haystack集成了诸如BERT和RoBERTa等最先进的语言模型,增强了其复杂查询任务的能力。它还具有用户友好的API和基于Web的UI,使用户可以轻松地与系统交互,并构建有效的问答和搜索应用程序。

图片

官方 :https://haystack.deepset.ai/overview/intro

主要功能

  • 文档存储:支持Elasticsearch、FAISS、SQL和InMemory存储后端。

  • 检索-阅读器流水线:

  • FARMReader:使用Transformer模型进行抽取式问答。

  • TransformersReader:通过Hugging Face模型进行抽取式问答。

  • 通过OpenAI GPT-3/4进行生成模型。

  • BM25:基于关键词的检索。

  • DensePassageRetriever:使用DPR的密集嵌入。

  • EmbeddingRetriever:通过Hugging Face模型进行自定义嵌入。

  • 检索器:

  • 阅读器:

  • 生成问答:

  • GenerativePipeline:将检索器和生成器(GPT-3/4)结合在一起。

  • HybridPipeline:混合不同的检索器/阅读器以获得最佳结果。

  • RAG流水线:

  • 评估:

  • 用于评估QA和搜索流水线的内置工具。

RAGatouille

RAGatouille 是一个轻量级框架,专门设计用于简化RAG流水线的构建,通过将预训练语言模型的力量与高效的检索技术相结合,产生高度相关和连贯的文本。

它抽象了涉及检索和生成的复杂性,专注于模块化和易用性。该框架提供了灵活且模块化的架构,允许用户尝试各种检索策略和生成模型。RAGatouille支持多种数据源,如文本文档、数据库和知识图谱,适用于多个领域和用例,是希望有效利用RAG任务的理想选择。

图片

Github:https://github.com/bclavie/RAGatouille

主要功能

  • 可插拔组件:

  • 使用基于关键词的检索(SimpleRetriever、BM25Retriever)或密集通道检索(DenseRetriever)检索数据。

  • 通过OpenAI(GPT-3/4)、Hugging Face Transformers或Anthropic Claude生成响应。

  • 提示模板:创建可定制的提示模板,以实现一致的问题理解。

  • 可扩展性:

  • 使用优化的检索有效处理大型数据集。

  • 通过Dask和Ray支持分布式处理。

EmbedChain

EmbedChain 是一个开源框架,旨在创建具有自定义知识的类似聊天机器人的应用程序,利用嵌入和大型语言模型(LLMs)。

它专注于基于嵌入的检索用于RAG,利用密集向量表示从大规模数据集中高效检索相关信息。EmbedChain提供了一个简单直观的API,便于索引和查询嵌入,使其可以轻松集成到RAG流水线中。

它支持各种嵌入模型,包括BERT和RoBERTa,并提供了相似度度量和索引策略的灵活性,增强了其根据特定需求定制应用程序的能力。

图片

Github:https://github.com/embedchain/embedchain

主要功能

  • 文档摄取:从文件(TXT、PDF、DOC、CSV)、API和网络抓取摄取数据。

  • 嵌入:

  • 利用嵌入进行高效准确的检索。

  • 支持OpenAI、BERT、RoBERTa和Sentence Transformers等嵌入模型。

  • 易于使用:

  • 简单的界面快速构建和部署RAG系统。

  • 提供了一个简单的API用于索引和查询嵌入。

结论

检索增强生成(RAG)是一种强大的技术,正在改变我们与语言模型的交互方式。通过利用生成模型和数据检索的优势,RAG 系统可以提供高度准确和上下文相关的响应。

无论是构建聊天机器人、问答系统还是内容生成平台,RAG 都有潜力将你的项目推向更高水平。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/616191.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EasyExcel简单使用

EasyExcel简单使用 ​ 之前一直用的Apache POI来做数据的导入导出&#xff0c;但听说阿里的EasyExcel也拥有POI的功能的同时&#xff0c;在处理大数据量的导入导出的时候性能上比POI更好&#xff0c;所以就来尝试使用一下 导入Maven依赖&#xff1a; <dependency><…

Java后端初始化项目(项目模板)

介绍 emmmm&#xff0c;最近看了一些网络资料&#xff0c;也是心血来潮&#xff0c;想自己手工搭建一个java后端的初始化项目模板来简化一下开发&#xff0c;也就发一个模板的具体制作流程&#xff0c;&#xff08;一步一步搭建&#xff0c;从易到难&#xff09; ok&#xff…

pycharm报错Process finished with exit code -1073740791 (0xC0000409)

pycharm报错Process finished with exit code -1073740791 (0xC0000409) 各种垃圾文章&#xff08;包括chatgpt产生的垃圾文章&#xff09;&#xff0c;没有给出具体的解决办法。 解决办法就是把具体报错信息显示出来&#xff0c;然后再去查。 勾选 然后再运行就能把错误显示…

Xilinx 千兆以太网TEMAC IP核 AXI4-Lite接口信号

在AX4总线标准中&#xff0c;AXI4-Lite主要由向她址映射型通信。TEMAC的管理法口采用AXI4-Lite标准接口&#xff0c;TEMAC核的AX14-Lite接口信号如表1所示&#xff0c;根据AX14-Lite标准&#xff0c;接口角色分为主接口(Maser Interface)和从接口(Slave Interface)。主接口为通…

让SOLIDWORKS用户无忧的基于云的PLM

在市场需求和法规不断变化的时代&#xff0c;紧跟变化步伐对于更快速、更有效地交付创新的高质量产品至关重要。 现代产品开发流程会生成数量惊人的数据&#xff0c;从零件和装配体文件到仿真和CAD/CAM文件。此外&#xff0c;要实现有效的项目交流&#xff0c;需要无数的文件&…

HIVE调优MapJoin

HIVE调优MapJoin 目录 HIVE调优MapJoin 1.mapjoin &#xff08;1.2以后自动默认启动mapjoin&#xff09; 2.创建表格 3.查询建表 4.通过 explain 展示执行计划 5.Map JOIN 相关设置&#xff1a; 1.mapjoin &#xff08;1.2以后自动默认启动mapjoin&#xff09;…

前端工程化,前端监控,工作流,部署,性能

开发规范 创建项目的时候&#xff0c;配置下 ESlint&#xff0c;stylelint&#xff0c; prettier&#xff0c; commitlint 等; ESLint 主要功能&#xff1a; ESLint 是一个静态代码检查工具&#xff0c;用于在 JavaScript 代码中识别和报告模式。它的目标是提供一个插件化的 …

最新巨量X-Bogus、_signature参数逆向分析与算法还原

文章目录 1. 写在前面2. 接口分析3. 断点分析4. 扣代码补环境5. 数据解密 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路…

机器学习(四) ----------逻辑回归

目录 1 概述 2 极大似然估计 3 逻辑回归核心思想 3.1 对数似然损失&#xff08;Log-likelihood Loss&#xff09; 4 分类问题的评估方法 4.1 混淆矩阵&#xff08;Confusion Matrix&#xff09;&#xff1a; 4.2 准确率&#xff08;Accuracy&#xff09; 4.3 精确率&am…

Redis-配置文件详解

Redis配置文件详解 units单位 配置大小单位&#xff0c;开头定义基本度量单位&#xff0c;只支持bytes&#xff0c;大小写不敏感。 INCLUDES Redis只有一个配置文件&#xff0c;如果多个人进行开发维护&#xff0c;那么就需要多个这样的配置文件&#xff0c;这时候多个配置 文…

kali搭建Vulhub靶场

简单概述 Vulhub是一个面向大众的开源漏洞靶场&#xff0c;借助Docker简单执行两条命令即可编译、运行一个完整的漏洞靶场镜像。旨在让漏洞复现变得更加简单&#xff0c;让安全研究者更加专注于漏洞原理本身。 Docker是一个开源的容器引擎&#xff0c;它有助于更快地交付应用…

20.接口自动化-Git

1、Git和SVN–版本控制系统 远程服务出问题后&#xff0c;可以先提交commit到本地仓库&#xff0c;之后再提交push远程仓库 git有clone Git环境组成部分 常用Git代码仓库服务-远程仓库 GitHub-服务器在国外&#xff0c;慢 GitLab-开源&#xff0c;可以在自己服务器搭建&…

NASA数据集——2002-2011年全球18.7 至 89.0 千兆赫的亮度温度、海冰浓度和海冰积雪深度三级网格产品(AE_SI12)数据

AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids V003 三级网格产品&#xff08;AE_SI12&#xff09;包括 18.7 至 89.0 千兆赫的亮度温度、海冰浓度和海冰积雪深度。 简介 美国国家航空航天局地球观测系统 Aqu…

STM32睡眠模式

文章目录 前言PWR介绍电源框图上电复位和掉电复位可编程电压检测器低功耗模式模式选择电源控制寄存器 睡眠模式停止模式待机模式 前言 在单片机产品中&#xff0c;例如遥控这类产品&#xff0c;长时间处于待机状态下&#xff0c;所以对于这类产品在待机时就应该尽可能的减少不…

STM32入门_江协科技_5~6_OB记录的自学笔记_GPIO输出_LED流水灯_蜂鸣器

5. GPIO 输出 5.1. GPIO简介 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口可配置为8种输入输出模式引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V&#xff08;端口输入5V的电压&#xff0c;之前引脚定义表格中带FT标识的&#xff09…

python视频转码脚本

今天有一个临时的需求&#xff0c;就是需要将一个wmv的初步转码成mp4的格式。找了一圈&#xff0c;免费的工具少&#xff0c;即使有免费的工具&#xff0c;在功能上也是有所限制&#xff0c;或者会给你塞广告或者附带安装其它流氓小游戏或者杀毒程序。 我并非不支持正版&#…

vue 点击平滑到指定位置并绑定页面滑动效果

1.html元素 写出对应的数据块&#xff08;注意添加ref) 用于获取元素位置 <template><div class"index-page" ><div class"top-head" ref"index"><img src"logo.png" style"height: 40px;margin-right: 2…

《解锁数字化劳动合同签约:构建高效的电子合同签约平台》

随着数字化转型的推进&#xff0c;传统的纸质劳动合同签约方式已经无法满足现代企业对于效率和便捷性的需求。电子劳动合同签约平台应运而生&#xff0c;为企业和员工提供了一种更加高效、便捷的合同签署方式。本文将介绍电子劳动合同签约平台的业务架构&#xff0c;探讨其如何…

地图涟漪效果

参考API echarts图表集 useEcharts.js import { onBeforeUnmount, onDeactivated } from "vue"; // import * as echarts from "echarts";/*** description 使用 Echarts (只是为了添加图表响应式)* param {Element} myChart Echarts实例 (必传)* param …

python代码学习案例-用turtle库绘制爱心图形效果

Python爱心代码&#xff0c;我们可以使用多种方法&#xff0c;包括使用turtle库来绘制图形&#xff0c;或者使用字符打印来在控制台中显示爱心。 首先&#xff0c;确保你已经安装了Python&#xff0c;并且你的环境支持turtle库&#xff08;它通常是Python标准库的一部分&#…