1.基于python的单细胞数据预处理-归一化

目录

  • 归一化的引入
  • 移位对数
  • 皮尔森近似残差
  • 两个归一化方法的总结

参考:
[1] https://github.com/Starlitnightly/single_cell_tutorial
[2] https://github.com/theislab/single-cell-best-practices

归一化的引入

在质量控制中,已经从数据集删除了低质量细胞。然而由于测序技术的限制,我们在样本中获得RNA时,经过分子捕获,逆转录和测序,这些步骤会影响同一种细胞的细胞间测序深度的变异性,因此,数据中的细胞间差异包含了这部分误差,等价于counts矩阵包含了变化很大的方差项。

归一化旨在通过将UMI counts的方差缩放到指定范围,以调整原始矩阵的UMI counts。目前有两种归一化方法:

  • 移位对数:在大部分数据中表现良好,有利于稳定方差,进而利于降维和差异基因识别;
  • 皮尔森残差的近似解析:保留生物学差异,有利于鉴定稀有细胞类型。

首先,我们加载数据:

import omicverse as ov
import scanpy as sc
import matplotlib.pyplot as plt

ov.utils.ov_plot_set()

adata = sc.read("./data/s4d8_quality_control.h5ad")
print(adata)

然后,可视化total_counts,这是描述一个细胞中发现的分子数量(UMI),通常也可以被认为是这个细胞的文库大小:

import seaborn as sns
plt.figure(figsize=(8, 6))
p1 = sns.histplot(adata.obs["total_counts"], bins=100, kde=False)
plt.show()

fig1
这可视化了原始计数UMI的分布,可以用于和之后归一化的分布对比。

移位对数

这里介绍基于delta方法的移位对数,delta方法应用 f ( Y ) f(Y) f(Y),使得原始计数 Y Y Y中的差异被缩小: f ( y ) = l o g ( y s + y 0 ) f(y)=log(\frac{y}{s}+y_{0}) f(y)=log(sy+y0)其中, s s s是缩放因子, y 0 y_{0} y0是伪计数。每个细胞都有对应的缩放因子,细胞 c c c的缩放因子记为: s c = ∑ g y g c L s_{c}=\frac{\sum_{g}y_{gc}}{L} sc=Lgygc其中, g g g代表不同的基因, L L L代表基因的计数总和。

使用移位对数归一化:

scales_counts = sc.pp.normalize_total(adata, target_sum=None, inplace=False)
print(scales_counts)
# log1p transform
adata.layers["log1p_norm"] = sc.pp.log1p(scales_counts["X"], copy=True)

可视化对比归一化前后:

fig, axes = plt.subplots(1, 2, figsize=(8, 4))
p1 = sns.histplot(adata.obs["total_counts"], bins=100, kde=False, ax=axes[0])
axes[0].set_title("Total counts")
p2 = sns.histplot(adata.layers["log1p_norm"].sum(1), bins=100, kde=False, ax=axes[1])
axes[1].set_title("Shifted logarithm")
plt.savefig("./result/2-3.png")

fig2

我们发现UMI的最大值在1000左右,经过移位对数化后,UMI的分布近似正态分布。

皮尔森近似残差

scRNA-seq包含生物异质性和批次效应,移位对数更倾向于消除批次差距,皮尔森近似残差可以保留移位对数去除的信息。实验中发现,皮尔森近似残差计算非常慢。对于14814×20171的adata,移位对数花费5秒,皮尔森近似残差花费3分33秒。

归一化与可视化为:

from scipy.sparse import csr_matrix
analytic_pearson = sc.experimental.pp.normalize_pearson_residuals(adata, inplace=False)
adata.layers["analytic_pearson_residuals"] = csr_matrix(analytic_pearson["X"])

fig, axes = plt.subplots(1, 2, figsize=(8, 4))
p1 = sns.histplot(adata.obs["total_counts"], bins=100, kde=False, ax=axes[0])
axes[0].set_title("Total counts")
p2 = sns.histplot(adata.layers["analytic_pearson_residuals"].sum(1), bins=100, kde=False, ax=axes[1])
axes[1].set_title("Analytic Pearson residuals")
plt.savefig("./result/2-4.png")

注意,如果我们设置inplace=True时,我们归一化的计数矩阵会取代原anndata文件中的计数矩阵,即更改adata.X的内容。

fig3
相比移位对数,皮尔森近似残差归一化后的数据分布与原始数据更相似,所以保留了更多信息。

两个归一化方法的总结

移位对数和皮尔逊近似残差是两种用于归一化数据的方法,它们各自具有不同的特点:

  1. 移位对数(Log-transformation)

    • 特点:将原始数据的计数值进行对数转换,通常是加上一个小的常数(如1),以避免计数值为零时出现无穷大的情况。
    • 优点:可以有效地减小数据的偏斜,使其更符合正态分布假设。对于计数数据,对数转换也可以减小计数之间的差异,有助于更好地展现数据的模式和关系。
    • 缺点:对于一些数据分布,特别是存在大量低计数值的情况下,对数转换可能会引入噪音,使数据更难解释。此外,对数转换可能会导致丢失原始数据的一些信息。
  2. 皮尔逊近似残差(Analytic Pearson residuals)

    • 特点:利用正则化负二项回归得到的皮尔逊残差,通过计算数据中的技术噪声模型来归一化数据。
    • 优点:能够更准确地处理数据中的技术效应和生物异质性,避免了一些常见归一化方法可能引入的偏差。不需要额外的启发式步骤(如伪计数添加或对数转换)。
    • 缺点:相对于简单的对数转换方法,计算复杂度较高。

总的来说,移位对数适用于简单的数据集,对数转换可使数据更易于处理和分析;而皮尔逊近似残差则更适用于复杂的数据集,尤其是对于单细胞RNA测序数据很需要生物异质性的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/611150.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣HOT100 - 739. 每日温度

解题思路&#xff1a; 单调栈 class Solution {public int[] dailyTemperatures(int[] temperatures) {int length temperatures.length;int[] ans new int[length];Deque<Integer> stack new LinkedList<>();for (int i 0; i < length; i) {int temperatu…

【NLP练习】使用seq2seq实现文本翻译

使用seq2seq实现文本翻译 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 from __future__ import unicode_literals, print_function, division from io import open import unicodedata import string impo…

Star-CCM+分配零部件至区域2-根据零部件的特性分组分配零部件至区域

前言 前文已经讲解了将零部件分配至区域的方法。其中有一种方法是"将所有部件分配到一个区域"。在工程应用中&#xff0c;有时会把同一种类型的部件分配到一个区域&#xff0c;因此在一个项目中有可能需要多次进行"将所有部件分配到一个区域"。如在电机温…

分布式与一致性协议之MySQL XA协议

MySQL XA协议 概述 相信很多人都知道MySQL支持单机事务&#xff0c;那么在分布式系统中&#xff0c;涉及多个节点&#xff0c;MySQL又是怎样实现分布式事务的呢&#xff1f; 举个例子&#xff0c;一个业务系统需要接收来自外部的指令&#xff0c;然后访问多个内部其他系统来执…

OpenBayes 一周速览|Apple 开源大模型 OpenELM 上线;字节发布 COCONut 首个全景图像分割数据集,入选 CVPR2024

公共资源速递 This Weekly Snapshots &#xff01; 5 个数据集&#xff1a; * COCONut 大规模图像分割数据集 * THUCNews 新闻数据集 * DuConv 对话数据集 * 安徽电信知道问答数据集 * Sentiment Analysis 中文情感分析数据集 2 个模型&#xff1a; * OpenELM-3B-Inst…

三、配置带HybridCLR的ARCore开发环境

预告 本专栏将介绍如何使用这个支持热更的AR开发插件&#xff0c;快速地开发AR应用。 专栏&#xff1a; Unity开发AR系列 插件简介 通过热更技术实现动态地加载AR场景&#xff0c;简化了AR开发流程&#xff0c;让用户可更多地关注Unity场景内容的制作。 “EnvInstaller…”支…

【前端基础】CSS样式+Vue中绘制时间轴

深度选择器 在 Vue.js 中&#xff0c;/deep/、>>>、:deep 和 ::v-deep 这些都是深度选择器&#xff0c;用于修改子组件的样式。它们主要用于解决作用域样式和组件样式之间的冲突问题。 1. /deep/ 或 >>> /deep/ 和 >>> 是相同的选择器&#xff0c;…

rider自定义代码片段(以C#为例)

1.先看效果 2.在哪设置 File→Settings→Editor→Live Templates→C#3.咋定义 代码片段中的变量用$$包围&#xff0c;而且我们可以自定义变量名称&#xff0c;如CName。选择我们自定义的变量名称我们可以修改变量是否可以被修改以及变量将自动匹配的值。 比如将CName自动填充…

123. SQL优化技巧汇总

文章目录 1 避免使用select *2 用union all代替union3 小表驱动大表4 批量操作5 多用limit6 in中值太多7 增量查询8 高效的分页9 用连接查询代替子查询10 join的表不宜过多11 join时要注意12 控制索引的数量13 选择合理的字段类型14 提升group by的效率15 索引优化 sql优化是一…

07_Flutter使用NestedScrollView+TabBarView滚动位置共享问题修复

07_Flutter使用NestedScrollViewTabBarView滚动位置共享问题修复 一.案发现场 可以看到&#xff0c;上图中三个列表的滑动位置共享了&#xff0c;滑动其中一个列表&#xff0c;会影响到另外两个&#xff0c;这显然不符合要求&#xff0c;先来看下布局&#xff0c;再说明产生这个…

Nginx rewrite项目练习

Nginx rewrite练习 1、访问ip/xcz&#xff0c;返回400状态码&#xff0c;要求用rewrite匹配/xcz a、访问/xcz返回400 b、访问/hello时正常访问xcz.html页面server {listen 192.168.99.137:80;server_name 192.168.99.137;charset utf-8;root /var/www/html;location / {root …

TDN: Temporal Difference Networks for Efficient Action Recognition 论文阅读

TDN: Temporal Difference Networks for Efficient Action Recognition 论文阅读 Abstract1. Introduction2. Related work3. Temporal Difference Networks3.1. Overview3.2. Short-term TDM3.3. Long-term TDM3.4. Exemplar: TDN-ResNet 4. ExperimentsAblation studiesCompa…

智能创作时代:AI引领下的内容生产革命与效率提升

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

部署xwiki服务需要配置 hibernate.cfg.xml如何配置?

1. 定位 hibernate.cfg.xml 文件 首先&#xff0c;确保您可以在 Tomcat 的 XWiki 部署目录中找到 hibernate.cfg.xml 文件&#xff1a; cd /opt/tomcat/latest/webapps/xwiki/WEB-INF ls -l hibernate.cfg.xml如果文件存在&#xff0c;您可以继续编辑它。如果不存在&#xff…

梅兰日兰NSJ400N断路器NSJ400N可议价

梅兰日兰 NSJ400N 3 极 400 安培 600 伏交流电 紧凑型断路器 制造商的原始标签 脱扣单元&#xff1a;LS 功能 –&#xff08;长时间和短时间&#xff09; 负载侧凸耳 中断额定值&#xff1a;65kA 240 Vac 35kA 480 伏交流电压 18kA 600 伏交流电压 &#xff08;外观可能与照…

中国地面基本气象逐小时数据获取方式

环境气象数据服务平台提供了全国大约2100个点位&#xff0c;2023年1月1日至今的小时级数据。包括气温、气压、湿度、风、降水等要素。 数据基于ECMWF ERA5-Land Hourly陆面再分析资料和中国地面基本气象观测逐三小时数据&#xff0c;使用机器学习模型加工所得&#xff0c;对比…

【17-Ⅱ】Head First Java 学习笔记

HeadFirst Java 本人有C语言基础&#xff0c;通过阅读Java廖雪峰网站&#xff0c;简单速成了java&#xff0c;但对其中一些入门概念有所疏漏&#xff0c;阅读本书以弥补。 第一章 Java入门 第二章 面向对象 第三章 变量 第四章 方法操作实例变量 第五章 程序实战 第六章 Java…

一文彻底读懂信息安全等级保护:包含等保标准、等保概念、等保对象、等保流程及等保方案(附:等保相关标准文档)

1. 什么是等级保护&#xff1f; 1.1. 概念 信息安全等级保护是指根据我国《信息安全等级保护管理办法》的规定&#xff0c;对各类信息系统按照其重要程度和保密需求进行分级&#xff0c;并制定相应的技术和管理措施&#xff0c;确保信息系统的安全性、完整性、可用性。根据等…

[C++][数据结构]哈希2:开散列/哈希桶的介绍和简单实现

前言 接着上一篇文章&#xff0c;我们知道了闭散列的弊端是空间利用率比较低&#xff0c;希望今天学习的开散列可以帮我们解决这个问题 引入 开散列法又叫链地址法(开链法)&#xff0c;首先对关键码集合用散列函数计算散列地址**&#xff0c;具有相同地址的关键码归于同一子…

数据库表自增主键超过代码Integer长度问题

数据库自增主键是 int(10) unsigned类型的字段&#xff0c;int(M) 中 M指示最大显示宽度&#xff0c;不代表存储长度&#xff0c;实际int(1)也是可以存储21.47亿长度的数字&#xff0c;如果是无符号类型的&#xff0c;那么可以从0~42.94亿。 我们的表主键自增到21.47亿后&#…