【贪心算法】单源最短路径Python实现

文章目录

    • @[toc]
      • 问题描述
      • `Dijkstra`算法
      • `Dijkstra`算法的正确性
        • 贪心选择性质
        • 最优子结构性质
      • `Dijkstra`算法应用示例
      • `Python`实现
      • 时间复杂性

问题描述

  • 给定一个带权有向图 G = ( V , E ) G = (V , E) G=(V,E),其中每条边的权是非负实数,给定 V V V中的一个顶点,称为源
  • 计算从源到所有其他各顶点的最短路径长度

Dijkstra算法

  • Dijkstra算法是解单源最短路径问题的一个贪心算法
  • 其基本思想是,设置顶点集合 S S S,并不断地做贪心选择来扩充这个集合,一个顶点属于集合 S S S当且仅当从源到该顶点的最短路径长度已知
  • 初始时, S S S中仅含有源,设 u u u G G G的某一个顶点,把从源到 u u u且中间只经过 S S S中顶点的路称为从源到 u u u的特殊路径,并用数组 d i s t dist dist记录当前每个顶点所对应的最短特殊路径长度,用数组 p a r e n t [ i ] parent[i] parent[i]记录从源到顶点 i i i的最短路径上 i i i的前一个顶点
  • Dijkstra算法每次从 V − S V - S VS中取出具有最短特殊路长度的顶点 u u u,将 u u u添加到 S S S中,同时对列表 d i s t dist dist p a r e n t parent parent做必要的修改,当 d i s t [ u ] + g r a p h [ u ] [ i ] < d i s t [ i ] dist[u] + graph[u][i] < dist[i] dist[u]+graph[u][i]<dist[i]时,置 d i s t [ i ] = d i s t [ u ] + g r a p h [ u ] [ i ] dist[i] = dist[u] + graph[u][i] dist[i]=dist[u]+graph[u][i],置 p a r e n t [ i ] = u parent[i] = u parent[i]=u
  • 一旦 S S S包含了所有 V V V中顶点, d i s t dist dist就记录了从源到所有其他顶点之间的最短路径长度

Dijkstra算法的正确性

贪心选择性质
  • Dijkstra算法所做的贪心选择是从 V − S V - S VS中选择具有最短特殊路径的顶点 u u u,从而确定从源到 u u u的最短路径长度 d i s t [ u ] dist[u] dist[u],从源到 u u u没有更短的其他路径
  • 事实上,如果存在一条从源到 u u u且长度比 d i s t [ u ] dist[u] dist[u]更短的路,设这条路初次走出 S S S之外到达的顶点为 x ∈ V − S x \in V - S xVS,然后徘徊于 S S S内外若干次,最后离开 S S S到达 u u u

1

  • 在这条路径上,分别记 d ( v , x ) d(v , x) d(v,x) d ( x , u ) d(x , u) d(x,u) d ( v , u ) d(v , u) d(v,u)为顶点 v v v到顶点 x x x、顶点 x x x到顶点 u u u和顶点 v v v到顶点 u u u的路长,那么 d i s t [ x ] ≤ d ( v , x ) dist[x] \leq d(v , x) dist[x]d(v,x) d ( v , x ) + d ( x , u ) = d ( v , u ) < d i s t [ u ] d(v , x) + d(x , u) = d(v , u) < dist[u] d(v,x)+d(x,u)=d(v,u)<dist[u],利用边权的非负性,可知 d ( x , u ) ≥ 0 d(x , u) \geq 0 d(x,u)0,从而推得 d i s t [ x ] < d i s t [ u ] dist[x] < dist[u] dist[x]<dist[u],此为矛盾
  • 这就证明了 d i s t [ u ] dist[u] dist[u]是从源到顶点 u u u的最短路径长度
最优子结构性质
  • 将添加 u u u之前的 S S S称为 S ′ S^{'} S
  • 当添加了 u u u后,可能出现一条到顶点 i i i的新的特殊路

2

  • 如果这条新特殊路是经过 S ′ S^{'} S到达顶点 u u u,然后从 u u u经一条边直接到达顶点 i i i,则这种路的最短的长度是 d i s t [ u ] + c [ u ] [ i ] dist[u] + c[u][i] dist[u]+c[u][i],此时,如果 d i s t [ u ] + c [ u ] [ i ] < d i s t [ i ] dist[u] + c[u][i] < dist[i] dist[u]+c[u][i]<dist[i],则算法中用 d i s t [ u ] + c [ u ] [ i ] dist[u] + c[u][i] dist[u]+c[u][i]作为 d i s t [ i ] dist[i] dist[i]的新值
  • 如果这条新特殊路经过 S ′ S^{'} S到达 u u u后,不是从 u u u经一条边直接到达 i i i,而是回到 S ′ S^{'} S中某个顶点 x x x,最后才到达顶点 i i i,那么由于 x x x S ′ S^{'} S中,因此 x x x u u u先加入 S S S,故从源到 x x x的路的长度比从源到 u u u,再从 u u u x x x的路的长度小,于是当前 d i s t [ i ] dist[i] dist[i]的值小于这条新特殊路的长度,因此,在算法中不必考虑这种路
  • 由此可知,不论算法中 d i s t [ u ] dist[u] dist[u]的值是否有变化,它总是关于当前顶点集 S S S到顶点 u u u的最短特殊路径长度

Dijkstra算法应用示例

  • 对下图中的有向图,应用Dijkstra算法计算从源顶点 1 1 1到其他顶点间最短路径的过程如下表所示

3

迭代 S S S u u u d i s t [ 2 ] dist[2] dist[2] d i s t [ 3 ] dist[3] dist[3] d i s t [ 4 ] dist[4] dist[4] d i s t [ 5 ] dist[5] dist[5]
初始 {   1   } \set{1} {1} − - 10 10 10 m a x i n t maxint maxint 30 30 30 100 100 100
1 1 1 {   1 , 2   } \set{1 , 2} {1,2} 2 2 2 10 10 10 60 60 60 30 30 30 100 100 100
2 2 2 {   1 , 2 , 3   } \set{1 , 2 , 3} {1,2,3} 4 4 4 10 10 10 50 50 50 30 30 30 90 90 90
3 3 3 {   1 , 2 , 4 , 3   } \set{1 , 2 , 4 , 3} {1,2,4,3} 3 3 3 10 10 10 50 50 50 30 30 30 60 60 60
4 4 4 {   1 , 2 , 4 , 3 , 5   } \set{1 , 2 , 4 , 3 , 5} {1,2,4,3,5} 5 5 5 10 10 10 50 50 50 30 30 30 60 60 60

Python实现

import sys


class Graph:
    def __init__(self, vertices):
        self.V = vertices
        self.graph = []

    def printSolution(self, dist, parent):

        for v in range(self.V):
            path = []
            curr = v

            while curr != -1:
                path.append(curr)

                curr = parent[curr]

            path.reverse()

            print((v, dist[v], path))

    def minDistance(self, dist, sptSet):
        min_value = sys.maxsize
        min_index = -1

        for v in range(self.V):
            if not sptSet[v] and dist[v] < min_value:
                min_value = dist[v]
                min_index = v

        return min_index

    def dijkstra(self, src):
        dist = [sys.maxsize] * self.V
        dist[src] = 0

        sptSet = [False] * self.V

        parent = [-1] * self.V

        for _ in range(self.V):
            u = self.minDistance(dist, sptSet)

            sptSet[u] = True

            for v in range(self.V):
                if not sptSet[v] and self.graph[u][v] != 0 and 0 < dist[u] + self.graph[u][v] < dist[v]:
                    dist[v] = dist[u] + self.graph[u][v]
                    parent[v] = u

        self.printSolution(dist, parent)


g = Graph(9)

g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],
           [4, 0, 8, 0, 0, 0, 0, 11, 0],
           [0, 8, 0, 7, 0, 4, 0, 0, 2],
           [0, 0, 7, 0, 9, 14, 0, 0, 0],
           [0, 0, 0, 9, 0, 10, 0, 0, 0],
           [0, 0, 4, 14, 10, 0, 2, 0, 0],
           [0, 0, 0, 0, 0, 2, 0, 1, 6],
           [8, 11, 0, 0, 0, 0, 1, 0, 7],
           [0, 0, 2, 0, 0, 0, 6, 7, 0]]

src = 0

print('-' * 40)
print(f'(顶点, 以顶点 {src} 为源的最短路径长度, 最短路径)')
print('-' * 40)

g.dijkstra(src)

print('-' * 40)
----------------------------------------
(顶点, 以顶点 0 为源的最短路径长度, 最短路径)
----------------------------------------
(0, 0, [0])
(1, 4, [0, 1])
(2, 12, [0, 1, 2])
(3, 19, [0, 1, 2, 3])
(4, 21, [0, 7, 6, 5, 4])
(5, 11, [0, 7, 6, 5])
(6, 9, [0, 7, 6])
(7, 8, [0, 7])
(8, 14, [0, 1, 2, 8])
----------------------------------------

时间复杂性

  • 对于一个具有 n n n个顶点的带权有向图,Dijkstra算法进行二重循环,需要 O ( n 2 ) O(n^{2}) O(n2)时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/599060.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue2之路由跳转传参中文问题处理

Vue2之路由跳转传参中文问题处理 文章目录 Vue2之路由跳转传参中文问题处理1. 问题描述1. 当前vue组件2. 跳转到的vue组件3. 出现的错误 2. 解决方法1. 当前vue组件2. 跳转到的vue组件 1. 问题描述 在el-table中的记录列表中放置了一个 操作按钮&#xff0c;点这个按钮时可以新…

Python网络协议socket

01 协议基础 01 网络协议 协议&#xff1a;一种规则 网络协议&#xff1a;网络规则&#xff0c;一种在网络通信中的数据包的数据规则 02 TCP/IP协议 osi模型 tcp/ip协议 03 tcp协议 TCP协议提供了一种端到端的、基于连接的、可靠的通信服务。 三次握手 创建连接 四次挥手…

铜价飙升,慧能泰HUSB332F带你狂飙

铜价&#xff0c;近期涨的很飘&#xff0c;涨到怀疑人生。继黄金后&#xff0c;铜成了另一个疯涨的明星&#xff01;作为电线电缆生产不可或缺的原材料&#xff0c;铜的身价暴涨直接拉响了成本警报&#xff0c;压缩了企业的利润空间。众多电线电缆制造商面临着严峻的挑战与考验…

LeetCode-DFS-树类-简单难度

关于二叉树的相关深度优先遍历类题目&#xff0c;重点在于掌握最基本的前中后序遍历&#xff0c;大多数题目都在围绕这套逻辑&#xff0c;找到处理节点的时机&#xff0c;以及停止遍历的条件&#xff0c;即可顺利完成。 二叉树前中后序遍历模板 所谓前中后序&#xff0c;指的…

蓝桥杯备赛(填空题)【Python B组】

一、弹珠堆放 问题描述 小蓝有 20230610 颗磁力弹珠&#xff0c;他对金字塔形状尤其感兴趣&#xff0c;如下图所示&#xff1a; &#xff08;图是盗来的啊&#xff0c;侵权请联系删除&#xff09; 问题分析 找规律&#xff0c;第一层1个&#xff0c;第二层3个&#xff0c;第…

预定类小程序源码搭建包含各行业+源码开源可二开+详细图文搭建部署教程

在数字化浪潮席卷的今天&#xff0c;各行各业都急需找到与顾客连接的新方式。为了满足这一需求&#xff0c;很多店铺和企业都推出了预定类小程序&#xff0c;分享一款开源版预订类小程序源码&#xff0c;一站式解决方案&#xff0c;覆盖餐饮、旅游、美容、医疗、教育等多个行业…

《架构思维:从程序员到CTO》:通往顶级架构师之路

&#x1f482; 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】&#x1f91f; 一站式轻松构建小程序、Web网站、移动应用&#xff1a;&#x1f449;注册地址&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交…

让我们把Domino变成SFTP服务器

大家好&#xff0c;才是真的好。 远程共享文件有很多办法&#xff0c;其中值得注意的是SFTP方式。SFTP即SSH文件传输协议&#xff0c;通过使用SSH传输层&#xff0c;SFTP可以通过Internet连接安全地访问和移动大量数据文件。 今天我们就介绍使用Domino中的HTTP OSGI方式来实现…

智慧监测IN!计讯物联筑牢高速滑坡预警“安全锁”

在现代社会&#xff0c;高速公路以其高速、便捷的特性&#xff0c;早已成为连接城市与地区之间的重要纽带&#xff0c;承载着日益增长的车流和人流。然而&#xff0c;随着车流量的激增&#xff0c;高速公路面临的运营压力和安全挑战也随之加大&#xff0c;其中滑坡风险尤为突出…

软考中级-软件设计师(十)网络与信息安全基础知识

一、网络概述 1.1计算机网络的概念 计算机网络的发展&#xff1a;具有通信功能的单机系统->具有通信功能的多机系统->以共享资源为目的的计算机网络->以局域网及因特网为支撑环境的分布式计算机系统 计算机网络的功能&#xff1a;数据通信、资源共享、负载均衡、高…

Echarts柱状图横坐标不显示

本人遇到的问题&#xff1a;折线图横坐标可以正常显示 柱状图接收一样的数据在横坐标却显示不了 1.在前端打印是否能够正常接收数据、数据类型是否有误以及数据是否有内容 console.log(typeof optionbar.xAxis.data)console.log(optionbar.xAxis.data) 2.如上确定能够接收到数…

ue引擎游戏开发笔记(32)——为游戏添加新武器装备

1.需求分析&#xff1a; 游戏中角色不会只有一种武器&#xff0c;不同武器需要不同模型&#xff0c;甚至可能需要角色持握武器的不同位置&#xff0c;因此需要添加专门的武器类&#xff0c;方便武器后续更新&#xff0c;建立一个武器类。 2.操作实现&#xff1a; 1.在ue5中新建…

艺术的新领域——探索元宇宙艺术展带来的沉浸式艺术体验

在数字化的浪潮中&#xff0c;元宇宙艺术展成为了一种全新的展览形式&#xff0c;它通过虚拟现实、3D建模技术和互动平台&#xff0c;将传统艺术与现代科技巧妙结合&#xff0c;提供了一种前所未有的艺术欣赏方式。此类展览不仅展示了艺术作品的新颖呈现&#xff0c;还为参观者…

翻译《The Old New Thing》 - Understanding the consequences of WAIT_ABANDONED

Understanding the consequences of WAIT_ABANDONED - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20050912-14/?p34253 Raymond Chen 2005年09月12日 理解 WAIT_ABANDONED 的后果 简要 文章讨论了在多线程同步中&#xff0c;如果一个线程…

【贪心算法】最小生成树Kruskal算法Python实现

文章目录 [toc]问题描述最小生成树的性质证明 Kruskal算法Python实现时间复杂性 问题描述 设 G ( V , E ) G (V , E) G(V,E)是无向连通带权图&#xff0c; E E E中每条边 ( v , w ) (v , w) (v,w)的权为 c [ v ] [ w ] c[v][w] c[v][w]如果 G G G的一个子图 G ′ G^{} G′是…

中国居民消费新特征:中枢回落,即时满足,去地产化

随着收入预期和财富效应的转变&#xff0c;居民更倾向于通过短期集中式的消费来获得即时满足的快乐&#xff0c;服务消费表现出了更强的韧性。服务消费强于商品消费、消费去地产化、汽车挑大梁的特征延续。 特征一&#xff1a;消费倾向高于2020-22年&#xff0c;低于2017-19年…

AI技术赋能下的视频监控方案是如何解决新能源汽车充电难问题的?

一、方案背景 刚刚结束的第十八届北京车展异常火爆&#xff0c;其中一组与汽车有关的数字让人格外关注。根据乘联会2024年4月19日公布的最新数据&#xff0c;全国乘用车市场零售达到51.6万辆&#xff0c;其中新能源车的销量约为26万辆&#xff0c;市场渗透率达到50.39%。 这意味…

如何让CANoe或Wireshark自动解析应用层协议

当我们使用CANoe软件或Wireshark工具抓取以太网总线上的报文时,网卡首先会把以太网总线上的模拟信号解析成以太网帧数据。数据链路层根据二层头部中的Type字段值确定上层的协议。 如果以太网使用的是TCP/IP协议栈,那么Type值要么是0x0800(IPv4),要么是0x0806(ARP),要么是0x…

SOL链DApp智能合约代币质押挖矿分红系统开发

随着区块链技术的不断发展和普及&#xff0c;越来越多的项目开始探索基于区块链的去中心化应用&#xff08;DApp&#xff09;。Solana&#xff08;SOL&#xff09;作为一条高性能、低成本的区块链网络&#xff0c;吸引了众多开发者和项目&#xff0c;其中包括了各种类型的DApp&…

Ansible自动化工具模块调用与playbook编写

目录 一、Ansible工作机制与特点 &#xff08;一&#xff09;Ansible工作机制 1. 初始化与配置 2. 编写Playbook 3. 调用模块 4. 加密敏感数据 5. 执行Playbook 6. 收集执行结果 7. 错误处理与回滚 8. 反馈与报告 &#xff08;二&#xff09;Ansible 的主要特点包括…