一、红黑树用在哪里
- HashMap。
- Linux 进程调度 CFS。
- Epoll 事件块的管理。
- Nginx Timer 事件管理。
- (key,value)的形式,并且中序遍历是顺序的,红黑树是二叉排序树。
二、红黑树性质
- 每个节点是红色或者黑色。
- 根节点是黑色的。
- 所有叶子节点都隐藏,并且为黑色。
- 如果一个节点是红色的,则它的两个儿子都是黑色的 → 红色节点不相邻。
- 对每个节点,从该节点到其子孙节点的所有路径上的包含相同数目的黑节点 → 黑色节点高度一样。
- 从根节点到叶子节点的最大深度和最小深度的关系是 2n - 1 : n
三、红黑树代码
typedef struct _rbtree_node {
int key;
void *value;
struct _rbtree_node *right;
struct _rbtree_node *left;
struct _rbtree_node *parent;
unsigned char color;
} rbtree_node;
struct _rbtree {
struct _rbtree_node root;
struct _rbtree_node *nil; // 所有叶子节点都隐藏,并且为黑色
} rbtree;
// 改进(如果一个结构体里有多棵红黑树)
// 减少冗余代码
#define RBTREE_ENTRY(name, type)
struct name {
struct type *right;
struct type *left;
struct type *parent;
unsigned char color;
}
typedef int KEY_TYPE;
typedef struct _my_thread{
KEY_TYPE key;
void *value;
RBTREE_ENTRY(, _my_thread) ready;
RBTREE_ENTRY(, _my_thread) wait;
RBTREE_ENTRY(, _my_thread) sleep;
RBTREE_ENTRY(, _my_thread) exit;
} my_thread;
四、红黑树旋转
- 当红黑树性质被破坏的时候,需要调整 → 左旋,右旋。
- 红黑树的插入或者删除最多旋转树的高度次就可以达到平衡。
void rbtree_left_rotate (rbtree *T, rbtree_node *x) {
rbtree_node *y = x->right;
// 第一步
x->right = y->left;
if (y->left != T->nil) {
y->left->parent = x;
}
// 第二步
y->parent = x->parent;
if (x->parent == T->nil){ // x 为根节点
T->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
// 第三步
y->left = x;
x->parent = y;
}
void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
rbtree_node *x = y->left;
y->left = x->right;
if (x->right != T->nil) {
x->right->parent = y;
}
x->parent = y->parentl;
if (y->parent == T->nil) { // y 为根节点
T->root = x;
} else if (y == y->parent->right) {
y->parent->right= x;
} else {
y->parent->left= x;
}
x->right = y;
y->parent = x;
}
五、红黑树插入
- 红黑树在插入节点以前,它已经是一棵红黑树了。
- 插入节点上色为红色,因为不会改变黑色节点高度
- 父节点是祖父节点的左子树
-
叔节点是红色的。
-
叔节点是黑色的,并且当前节点是右子树。
-
叔节点是黑色的,并且当前节点是左子树。
-
#define RED 0
#define BLACK 1
void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {
while (z->parent->color == RED) { //z ---> RED
if (z->parent == z->parent->parent->left) {
rbtree_node *y = z->parent->parent->right;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->right) {
z = z->parent;
rbtree_left_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_right_rotate(T, z->parent->parent);
}
} else {
rbtree_node *y = z->parent->parent->left;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->left) {
z = z->parent;
rbtree_right_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_left_rotate(T, z->parent->parent);
}
}
}
T->root->color = BLACK;
}
void rbtree_insert(rbtree *T, rbtree_node *z) {
rbtree_node *y = T->nil;
rbtree_node *x = T->root;
while (x != T->nil) {
y = x;
if (z->key < x->key) {
x = x->left;
} else if (z->key > x->key) {
x = x->right;
} else { //Exist 由业务场景决定
return ;
}
}
z->parent = y;
if (y == T->nil) {
T->root = z;
} else if (z->key < y->key) {
y->left = z;
} else {
y->right = z;
}
z->left = T->nil;
z->right = T->nil;
z->color = RED;
rbtree_insert_fixup(T, z);
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define RED 1
#define BLACK 2
typedef int KEY_TYPE;
typedef struct _rbtree_node {
unsigned char color;
struct _rbtree_node *right;
struct _rbtree_node *left;
struct _rbtree_node *parent;
KEY_TYPE key;
void *value;
} rbtree_node;
typedef struct _rbtree {
rbtree_node *root;
rbtree_node *nil;
} rbtree;
rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) {
while (x->left != T->nil) {
x = x->left;
}
return x;
}
rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) {
while (x->right != T->nil) {
x = x->right;
}
return x;
}
rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) {
rbtree_node *y = x->parent;
if (x->right != T->nil) {
return rbtree_mini(T, x->right);
}
while ((y != T->nil) && (x == y->right)) {
x = y;
y = y->parent;
}
return y;
}
void rbtree_left_rotate(rbtree *T, rbtree_node *x) {
rbtree_node *y = x->right; // x --> y , y --> x, right --> left, left --> right
x->right = y->left; //1 1
if (y->left != T->nil) { //1 2
y->left->parent = x;
}
y->parent = x->parent; //1 3
if (x->parent == T->nil) { //1 4
T->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x; //1 5
x->parent = y; //1 6
}
void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
rbtree_node *x = y->left;
y->left = x->right;
if (x->right != T->nil) {
x->right->parent = y;
}
x->parent = y->parent;
if (y->parent == T->nil) {
T->root = x;
} else if (y == y->parent->right) {
y->parent->right = x;
} else {
y->parent->left = x;
}
x->right = y;
y->parent = x;
}
void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {
while (z->parent->color == RED) { //z ---> RED
if (z->parent == z->parent->parent->left) {
rbtree_node *y = z->parent->parent->right;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->right) {
z = z->parent;
rbtree_left_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_right_rotate(T, z->parent->parent);
}
}else {
rbtree_node *y = z->parent->parent->left;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->left) {
z = z->parent;
rbtree_right_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_left_rotate(T, z->parent->parent);
}
}
}
T->root->color = BLACK;
}
void rbtree_insert(rbtree *T, rbtree_node *z) {
rbtree_node *y = T->nil;
rbtree_node *x = T->root;
while (x != T->nil) {
y = x;
if (z->key < x->key) {
x = x->left;
} else if (z->key > x->key) {
x = x->right;
} else { //Exist
return ;
}
}
z->parent = y;
if (y == T->nil) {
T->root = z;
} else if (z->key < y->key) {
y->left = z;
} else {
y->right = z;
}
z->left = T->nil;
z->right = T->nil;
z->color = RED;
rbtree_insert_fixup(T, z);
}
void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {
while ((x != T->root) && (x->color == BLACK)) {
if (x == x->parent->left) {
rbtree_node *w= x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rbtree_left_rotate(T, x->parent);
w = x->parent->right;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
rbtree_right_rotate(T, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
rbtree_left_rotate(T, x->parent);
x = T->root;
}
} else {
rbtree_node *w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rbtree_right_rotate(T, x->parent);
w = x->parent->left;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
rbtree_left_rotate(T, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
rbtree_right_rotate(T, x->parent);
x = T->root;
}
}
}
x->color = BLACK;
}
rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {
rbtree_node *y = T->nil;
rbtree_node *x = T->nil;
if ((z->left == T->nil) || (z->right == T->nil)) {
y = z;
} else {
y = rbtree_successor(T, z);
}
if (y->left != T->nil) {
x = y->left;
} else if (y->right != T->nil) {
x = y->right;
}
x->parent = y->parent;
if (y->parent == T->nil) {
T->root = x;
} else if (y == y->parent->left) {
y->parent->left = x;
} else {
y->parent->right = x;
}
if (y != z) {
z->key = y->key;
z->value = y->value;
}
if (y->color == BLACK) {
rbtree_delete_fixup(T, x);
}
return y;
}
rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {
rbtree_node *node = T->root;
while (node != T->nil) {
if (key < node->key) {
node = node->left;
} else if (key > node->key) {
node = node->right;
} else {
return node;
}
}
return T->nil;
}
void rbtree_traversal(rbtree *T, rbtree_node *node) {
if (node != T->nil) {
rbtree_traversal(T, node->left);
printf("key:%d, color:%d\n", node->key, node->color);
rbtree_traversal(T, node->right);
}
}
int main() {
int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15};
rbtree *T = (rbtree *)malloc(sizeof(rbtree));
if (T == NULL) {
printf("malloc failed\n");
return -1;
}
T->nil = (rbtree_node*)malloc(sizeof(rbtree_node));
T->nil->color = BLACK;
T->root = T->nil;
rbtree_node *node = T->nil;
int i = 0;
for (i = 0;i < 20;i ++) {
node = (rbtree_node*)malloc(sizeof(rbtree_node));
node->key = keyArray[i];
node->value = NULL;
rbtree_insert(T, node);
}
rbtree_traversal(T, T->root);
printf("----------------------------------------\n");
for (i = 0;i < 20;i ++) {
rbtree_node *node = rbtree_search(T, keyArray[i]);
rbtree_node *cur = rbtree_delete(T, node);
free(cur);
rbtree_traversal(T, T->root);
printf("----------------------------------------\n");
}
}