【数据可视化-02】Seaborn图形实战宝典

Seaborn介绍

  Seaborn是一个基于Python的数据可视化库,它建立在matplotlib的基础之上,为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型,使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信息丰富的统计图形的数据科学家和数据分析师。

  Seaborn的主要特点包括:

  1. 集成性:Seaborn与pandas数据结构紧密结合,使得数据分析和可视化可以无缝衔接。
  2. 美观性:Seaborn提供了精心设计的默认样式和调色板,使得图形更具吸引力。
  3. 统计绘图:Seaborn提供了多种统计图形,如箱线图、小提琴图、热力图等,这些图形可以直观地展示数据的分布和关系。
  4. 数据分布可视化:通过核密度估计(KDE)和联合图(jointplot)等工具,Seaborn可以方便地展示数据的分布和相关性。
  5. 高度可定制性:虽然Seaborn提供了美观的默认样式,但用户仍然可以轻松地调整图形的各个方面,以满足特定的需求。

  seaborn官方给出为了常用图形的案列,具体参看seaborn官方示例文档
在这里插入图片描述

  Seaborn是一个基于matplotlib的数据可视化Python库,它提供了一种高级界面,用于绘制有吸引力的统计图形。下面是一些使用Seaborn绘制常见图形的示例:
  因为seaborn并是一个绘图库,它与DataFrame对象有很好的集成。

import pandas as pd
import seaborn as sns 
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
sns.set(style="white",font_scale=1.5)
sns.set(rc={"axes.facecolor":"#FFFAF0","figure.facecolor":"#FFFAF0"})
sns.set_context("poster",font_scale = .7)
import warnings
warnings.filterwarnings('ignore')
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体:解决plot不能显示中文问题
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

pd.set_option("display.max.columns",None)

iris = sns.load_dataset('iris')
tips = sns.load_dataset('tips')
titanic = sns.load_dataset('titanic') 

一、 折线图 (Line Plot) lineplot线型图

sns.lineplot(x='sepal_length',y='sepal_width',data=iris)
plt.title("iris中sepal_length和sepal_width关系图")
#进行分组
sns.lineplot(x='sepal_length',y='sepal_width',data=iris,hue='species')
#按性别分组
sns.lineplot(x='total_bill',y='tip',data=tips,hue='sex')

# style = 'time'
sns.lineplot(x='total_bill',y='tip',data=tips,hue='sex',size='smoker',style='time')

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、 直方图 (Histogram)

   histplot和displot在显示一个维度时,效果时一致的;

# 使用Seaborn绘制直方图
sns.histplot(tips['tip'], bins=30)

#kde 是否显示数据分布曲线 默认值是False
#设置风格样式
sns.set(style='white')
sns.displot(tips['tip'],bins=30,kde=True)

在这里插入图片描述
在这里插入图片描述

三、 饼图 (Pie Chart)

  虽然Seaborn没有直接的饼图函数,但你可以使用matplotlib来绘制:

# 计算每个类别的百分比
sizes = iris['species'].value_counts(normalize=True) * 100
labels = sizes.index

# 使用matplotlib绘制饼图
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.axis('equal')  # 确保饼图是圆的
plt.show()

在这里插入图片描述

四、 散点图 (Scatter Plot)

sns.scatterplot(data=tips,x='total_bill',y='tip')
#size参数指定点的大小
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size')
#hue 按是否吸烟进行分组
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size',hue='smoker')
#保存图片
from matplotlib import pyplot as plt
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size',hue='smoker',style='time')
plt.savefig('scatterplot.jpg')

在这里插入图片描述
在这里插入图片描述

五、 柱状图/条形图barplot 堆叠柱状图 (Stacked Bar Chart)

# 使用Seaborn绘制柱状图
#绘制条形图  barplot
sns.barplot(x='sex',y='survived',data=titanic)
#按船舱分组
sns.barplot(x='sex',y='survived',data=titanic,hue='class')**

sns.barplot(data=df, x='category', y='value')
plt.show()

在这里插入图片描述
在这里插入图片描述

# importing all required libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

 # creating dataframe

df = pd.DataFrame({

    'X': [1, 2, 3],

    'Y': [3, 4, 5],

    'Z': [2, 1, 2]

})

 # creating subplots

ax = plt.subplots()

 # plotting columns

ax = sns.barplot(x=df["X"], y=df["Y"], color='b')

ax = sns.barplot(x=df["X"], y=df["Z"], color='r')

 # renaming the axes

ax.set(xlabel="x-axis", ylabel="y-axis")

 # visualizing illustration

plt.show()

在这里插入图片描述

六、 箱形图 (Box Plot)

#绘制盒图 boxplot
sns.boxplot(x='day',y='total_bill',data=tips)
#按时间time分组
sns.boxplot(x='day',y='total_bill',data=tips,hue='time')

在这里插入图片描述
在这里插入图片描述

七、 小提琴图 (Violin Plot)

  小提琴图是箱图和密度图的一种结合图形。左右越宽代表当前数据 量越密集。

sns.violinplot(x='day',y='total_bill',data=tips)
#按性别分组
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex')
#男生女生合到一块
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex',split=True)
#去掉中间线
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex',split=True,inner=None)

在这里插入图片描述
在这里插入图片描述

八、 ** stripplot(分布散点图)**


#绘制分布散点图  stripplot()
sns.stripplot(x='day',y='total_bill',data=tips)
#jitter 震动 默认是True
sns.stripplot(x='day',y='total_bill',data=tips,jitter=False)

在这里插入图片描述

九、 swarmplot(分簇散点图)

sns.swarmplot(x='day',y='total_bill',data=tips)
#按性别分组
sns.swarmplot(x='day',y='total_bill',data=tips,hue='sex')
#按时间分组
sns.swarmplot(x='day',y='total_bill',data=tips,hue='time')

在这里插入图片描述

十、 热力图 (Heatmap)

   热力图(heatmap)是以矩阵的形式表示,数据值在图形中以颜色 的深浅来表示数量的多少,并可以快速到到大值的与最小值所在位 置。在机器学习的分类中经常用来作混淆矩阵的比较。

#导入模块
import numpy as np
import seaborn as sns
#加载航班数据
flights = sns.load_dataset('flights')
#pivot 是DataFrame中的一个函数
data = flights.pivot('month','year','passengers')
#绘制热力图
sns.heatmap(data=data)
#参数 annot :True
sns.heatmap(data=data,annot=True)
#以整数的形式显示
sns.heatmap(data=data,annot=True,fmt='d')
#去掉右侧图例
sns.heatmap(data=data,annot=True,fmt='d',linewidths=0.5,cbar=False)
#修改色系
sns.heatmap(data=data,annot=True,fmt='d',linewidths=0.5,cbar=False,cmap='YlGnBu')

在这里插入图片描述

十一、 配对图 (Pair Plot)

import seaborn as sns
import matplotlib.pyplot as plt

df = sns.load_dataset('iris')

# 绘制配对图
sns.pairplot(df, hue='species')
plt.show()

在这里插入图片描述

十二、 回归分析图

  线性回归图通过大量数据找到模型拟合线性回归线。

#lmplot()
sns.lmplot(data=iris,x='petal_length',y='petal_width')
#regplot()
sns.regplot(data=iris,x='petal_length',y='petal_width')

在这里插入图片描述

十三、 jointplot

  joint意为联合,顾名思义jointplot是一个双变量分布图表接口。绘图结果主要有三部分:绘图主体用于表达两个变量对应的散点图分布,在其上侧和右侧分别体现2个变量的直方图分布
在这里插入图片描述

十四、 pointplot点图

#加载模块
import seaborn as sns
#加载数据
titanic = sns.load_dataset('titanic')
#绘制点图
sns.pointplot(data=titanic,x='sex',y='survived')
#hue 进行分组
sns.pointplot(data=titanic,x='sex',y='survived',hue='class')

在这里插入图片描述

Seaborn总结

  Seaborn是一个功能强大且易于使用的数据可视化库,它特别适合数据科学家和数据分析师使用。通过Seaborn,用户可以轻松创建各种统计图形,以直观地展示数据的分布、关系和趋势。Seaborn与pandas的紧密结合使得数据分析和可视化可以无缝衔接,从而提高了工作效率。

  此外,Seaborn的默认样式和调色板使得图形更具吸引力,同时也提供了高度的可定制性,用户可以根据需要调整图形的各个方面。这些特点使得Seaborn成为数据可视化领域的佼佼者之一。

  然而,需要注意的是,虽然Seaborn提供了许多高级功能,但它仍然是基于matplotlib构建的。因此,对于想要深入了解数据可视化底层原理的用户来说,掌握matplotlib仍然是非常重要的。同时,Seaborn的某些高级功能可能需要一定的统计学知识才能充分理解和使用。

  总之,Seaborn是一个强大而易于使用的数据可视化库,它可以帮助用户轻松地创建各种统计图形,以直观地展示数据的分布、关系和趋势。无论是数据科学家还是数据分析师,都应该掌握Seaborn的基本用法和高级功能,以提高数据分析和可视化的效率和质量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/596182.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

后端接口返回二进制数据流,前端如何将其转换成对应的excel、csv和json文件格式并下载

本文主要是介绍在工作中遇到的后端接口返回一个二进制数据流,前端在界面上创建下载按钮并下载成对应格式的文件导出。 downloadData({start: startTime,end: endTime,exportType: 0, // 0-excel, 1-csv, 2-json }).then((res) > {download(res, startTime, endTi…

Flutter笔记:Widgets Easier组件库 - 使用标签(Tag)

Flutter笔记 Widgets Easier组件库 - 使用标签(Tag) - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this …

【网络原理】IP协议详解

一.与IP协议相关的基本概念 IP协议,即网际互连协议(Internet Protocol),是TCP/IP体系中的核心网络层协议。 网络层IP协议解决的问题 数据传输的过程中,不是直接进行的传输,而是经过层层的封装和分用的过程才能到达对端. IP协议主…

计算机是如何执行指令的

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益: 了解大厂经验拥有和大厂相匹配的技术等 希望看什么,评论或者私信告诉我! 文章目录 一…

19 内核开发-内核源码编译

19 内核开发-内核源码编译 (1)开始准备 安装好virtual box ubuntu 系统后,即可下载内核代码,进行编译 历史内核源码地址:https://mirrors.tuna.tsinghua.edu.cn/kernel/v5.x/ 下载 linux-5.10.102.tar.gz 的包,可以使用wget 命令 创建编译目…

CasaOS玩客云安装memos开源云笔记并实现随时随地远程记笔记

文章目录 前言1. 使用Docker部署memos2. 注册账号与简单操作演示3. 安装cpolar内网穿透4. 创建公网地址5. 创建固定公网地址 前言 本文主要介绍如何在CasaOS玩客云,使用Docker本地部署21.6K stars的热门开源云笔记服务memos,并结合cpolar内网穿透工具打…

基于Springboot的校园志愿者管理系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的校园志愿者管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结…

土壤重金属含量分布、Cd镉含量、Cr、Pb、Cu、Zn、As和Hg、土壤采样点、土壤类型分布

土壤是人类赖以生存和发展的重要资源之一,也是陆地生态系统重要的组成部分。近年来, 随着我国城市化进程加快,矿产资源开发、金属加工冶炼、化工生产、污水灌溉以及不合理的化肥农药施用等因素导致重金属在农田土壤中不断富集。重金属作为土壤环境中一种具有潜在危害…

软件测试与管理-白盒测试-逻辑覆盖法例题

目录 知识点: 例题 : 知识点: 语句覆盖:设计足够多的测试用例,使得被测试程序中的“ 每条可执行语句至少被执行一次” 优点:可通过源码观察直观地得到测试用例,无须细分每个判定表达式。缺点&am…

2024-5-3学习笔记 虚拟继承原理

目录 原理 总结 前面提到过,解决菱形继承产生的数据二义性问题和数据冗余,就需要用到虚拟继承,关于它是如何解决的,我们来一起研究。 class Person { public :string _name ; // 姓名 }; class Student : virtual public Perso…

Chrome浏览器命令行妙用:使你的网上冲浪更加无障碍

引言 在当今数字化时代,网络浏览器已成为我们日常生活中不可或缺的工具之一。对于许多人来说,Google Chrome浏览器是首选,不仅因为它的普及度,更因为它提供的丰富功能和高度的可定制性。在Chrome的众多特性中,命令行功…

Pytorch实现图片异常检测

图片异常检测 异常检测指的是在正常的图片中找到异常的数据,由于无法通过规则进行识别判断,这样的应用场景通常都是需要人工进行识别,比如残次品的识别,图片异常识别模型的目标是可以代替或者辅助人工进行识别异常图片。 AnoGAN…

Linux-信号概念

1. 什么是信号 信号本质是一种通知机制,用户or操作系统通过发送信号通知进程,进程进行后续处理 在日常生活中就有很多例子,比如打游戏方面王者荣耀的“进攻”,“撤退”,“请求集合”,“干得漂亮&#xff01…

【一步一步了解Java系列】:探索Java基本类型转换的秘密

看到这句话的时候证明:此刻你我都在努力~ 加油陌生人~ 个人主页: Gu Gu Study ​​ 专栏:一步一步了解Java 喜欢的一句话: 常常会回顾努力的自己,所以要为自己的努力留下足迹。 如果喜欢能否点个赞支持一下&#…

第四百九十二回

文章目录 1. 概念介绍2. 使用方法2.1 SegmentedButton2.2 ButtonSegment 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"SearchBar组件"相关的内容,本章回中将介绍SegmentedButton组件.闲话休提,让我们一起Talk …

Java面试题:多线程3

CAS Compare and Swap(比较再交换) 体现了一种乐观锁的思想,在无锁情况下保证线程操作共享数据的原子性. 线程A和线程B对主内存中的变量c同时进行修改 在线程A中存在预期值a,修改后的更新值a1 在线程B中存在预期值b,修改后的更新值b1 当且仅当预期值和主内存中的变量值相等…

Llama3-Tutorial之XTuner微调Llama3个人小助手

Llama3-Tutorial之XTuner微调Llama3个人小助手 使用XTuner微调llama3模型。 参考: https://github.com/SmartFlowAI/Llama3-Tutorial 1. web demo部署 参考上一节内容已经完成web demo部署,进行对话测试, 当前回答基于llama3官方发布的模型进行推理生成&…

MySQL基础_5.多表查询

文章目录 一、多表连接1.1、笛卡尔积(或交叉连接) 二、多表查询(SQL99语法)2.1、内连接(INNER JOIN)2.2、内连接(INNER JOIN) 一、多表连接 多表查询,也称为关联查询,指两个或更多个表一起完成查询操作。 …

利用matplotlib和networkx绘制有向图[显示边的权重]

使用Python中的matplotlib和networkx库来绘制一个有向图,并显示边的权重标签。 1. 定义了节点和边:节点是一个包含5个节点的列表,边是一个包含各个边以及它们的权重的列表。 2. 创建了一个有向图对象 G。 3. 向图中添加节点和边。 4. 设置了…

Sarcasm detection论文解析 |基于情感背景和个人表达习惯的有效讽刺检测方法

论文地址 论文地址:https://link.springer.com/article/10.1007/s12559-021-09832-x#/ 论文首页 笔记框架 基于情感背景和个人表达习惯的有效讽刺检测方法 📅出版年份:2022 📖出版期刊:Cognitive Computation 📈影响因子:5.4 &…