Pytorch实现图片异常检测

图片异常检测

异常检测指的是在正常的图片中找到异常的数据,由于无法通过规则进行识别判断,这样的应用场景通常都是需要人工进行识别,比如残次品的识别,图片异常识别模型的目标是可以代替或者辅助人工进行识别异常图片。

AnoGAN 模型

由于正常图片的数据量远大于异常图片,可能只有 1/100 的图片是异常图片,甚至更小。通过图片分类模型很难实现异常图片的识别,因为无法找到足够的异常数据进行训练。因此,只能通过正常图片去构建异常检测模型。如何通过正常的图片实现检测异常图片的模型,可以使用之前用的对抗网络,通过识别网络进行检测,图片是正常数据还是伪造数据。AnoGAN 模型是用于识别异常图片的模型,如果只用GAN 模型中的识别网络进行判别,效果并不好,所以 AnoGAN 网络不光依靠识别网络,生成网络在其中也发挥重要的作用。

对于AnoGAN,对于输入的数据,AnoGAN 网络首先会对图片生成噪声 Z。通过噪声 Z 输入生成网络生成可以被识别的图片,如果训练集中不存在这样的图片,例如异常图片,那么生成网络是无法生成的,这类图片就是异常图片。

噪声 Z 的生成方式,初始状态噪声是随机生成的,随后噪声通过网络生成图片,把生成的图片训练集作比较,比较的方式是通过像素差值的绝对值求和,最后算出损失值,最后通过网络进行训练以减少损失值。

上述的这种损失值在AutoGen 中被称为 Residual Loss,如果只有 Residual Loss,模型效果有限。所以,AnoGAN 这里也利用了判别网络,将测试图像和生成图像输入到判别网络,并对判别网络的输出特征进行差值计算,这个差值称为 Discrimination loss。最后通过 Discrimination Loss 和 Residual Loss 合并组成损失函数。

数据准备
import os
import urllib.request
import zipfile
import tarfile

import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image
import numpy as np

#不存在“data”文件夹时创建
data_dir = "./data/"
if not os.path.exists(data_dir):
    os.mkdir(data_dir)

import sklearn
# 下载并读取MNIST的手写数字图像。
from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', version=1, data_home="./data/")  #data_home指定保存地址。

# 数据的提取
X = mnist.data
y = mnist.target

# 将MNIST的第一个数据可视化
plt.imshow(np.array(X.iloc[0]).reshape(28, 28), cmap='gray')
print("这个图像数据的标签是{}".format(y[0]))

#在文件夹“data”下创建文件夹“img_78”
data_dir_path = "./data/img_78/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

#从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count7=0
count8=0
max_num=200  # 每制作200张图片

for i in range(len(X)):
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/img_78/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    #图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/img_78/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count8+=1
        
    # 制作200张7和8之后,break
    if (count7>=max_num) and (count8>=max_num):
        break


# 在文件夹“data”下面创建文件夹“test”
data_dir_path = "./data/test/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 在上述制作7,8图像时使用的index的最终值
i_start = i+1
print(i_start)

# 从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count2=0
count7=0
count8=0
max_num=5  #每制作五张图片

for i in range(i_start,len(X)):  # 从i_start开始
    
    #图像2的制作
    if (y[i] == "2") and (count2<max_num):
        file_path="./data/test/img_2_"+str(count2)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count2+=1
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/test/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  #将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 6扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/test/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count8+=1 


# 在文件夹“data”下创建文件夹“img_78_28size”
data_dir_path = "./data/img_78_28size/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 从MNIST将数字7、8的图像作为图像保存到“img_78_28size”文件夹中
count7=0
count8=0
max_num=200  # 每制作200张图片

for i in range(len(X)):
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/img_78_28size/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/img_78_28size/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 画像变成PIL
        pil_img_f.save(file_path)  # 保存
        count8+=1
    
    if (count7>=max_num) and (count8>=max_num):
        break



# 在文件夹“data”下面创建文件夹“test”
data_dir_path = "./data/test_28size/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 在上述制作7,8图像时使用的index的最终值
i_start = i+1
print(i_start)

# 从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count2=0
count7=0
count8=0
max_num=5  # 每制作五张图片

for i in range(i_start,len(X)):  #从i_start开始
    
    # 图像2的制作
    if (y[i] == "2") and (count2<max_num):
        file_path="./data/test_28size/img_2_"+str(count2)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count2+=1 
    
    # 画像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/test_28size/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/test_28size/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count8+=1 



AnoGAN 实现

AnoGAN 网络实现以及训练、验证

# 导入软件包
import random
import math
import time
import pandas as pd
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import transforms

# Setup seeds
torch.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)

class Generator(nn.Module):

    def __init__(self, z_dim=20, image_size=64):
        super(Generator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.ConvTranspose2d(z_dim, image_size * 8,
                               kernel_size=4, stride=1),
            nn.BatchNorm2d(image_size * 8),
            nn.ReLU(inplace=True))

        self.layer2 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 8, image_size * 4,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size * 4),
            nn.ReLU(inplace=True))

        self.layer3 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 4, image_size * 2,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size * 2),
            nn.ReLU(inplace=True))

        self.layer4 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 2, image_size,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size),
            nn.ReLU(inplace=True))

        self.last = nn.Sequential(
            nn.ConvTranspose2d(image_size, 1, kernel_size=4,
                               stride=2, padding=1),
            nn.Tanh())
        #注意 :由于是黑白图像,因此输出通道数量为1

    def forward(self, z):
        out = self.layer1(z)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.last(out)

        return out

# 动作确认
import matplotlib.pyplot as plt
%matplotlib inline

G = Generator(z_dim=20, image_size=64)

# 输入的随机数
input_z = torch.randn(1, 20)

# 将张量尺寸变形为(1,20,1,1)
input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)

# 输出假图像
fake_images = G(input_z)

img_transformed = fake_images[0][0].detach().numpy()
plt.imshow(img_transformed, 'gray')
plt.show()

class Discriminator(nn.Module):

    def __init__(self, z_dim=20, image_size=64):
        super(Discriminator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, image_size, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))
        #注意 :由于是黑白图像,因此输出通道数量为1

        self.layer2 = nn.Sequential(
            nn.Conv2d(image_size, image_size*2, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer3 = nn.Sequential(
            nn.Conv2d(image_size*2, image_size*4, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer4 = nn.Sequential(
            nn.Conv2d(image_size*4, image_size*8, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.last = nn.Conv2d(image_size*8, 1, kernel_size=4, stride=1)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        feature = out  #最后将通道集中到一个特征量中
        feature = feature.view(feature.size()[0], -1)  #转换为二维

        out = self.last(out)

        return out, feature

# 确认程序执
D = Discriminator(z_dim=20, image_size=64)

#生成伪造图像
input_z = torch.randn(1, 20)
input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
fake_images = G(input_z)

#将伪造的图像输入判别器D中
d_out = D(fake_images)

# 将输出值d_out乘以Sigmoid函数,将其转换成0~1的值
print(nn.Sigmoid()(d_out[0]))

# feature
print(d_out[1].shape)

def make_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(200):
        img_path = "./data/img_78/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/img_78/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list

class ImageTransform():
    """图像的预处理类"""

    def __init__(self, mean, std):
        self.data_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])

    def __call__(self, img):
        return self.data_transform(img)
class GAN_Img_Dataset(data.Dataset):
    """图像的Dataset类。继承PyTorch的Dataset类"""

    def __init__(self, file_list, transform):
        self.file_list = file_list
        self.transform = transform

    def __len__(self):
        '''返回图像的张数'''
        return len(self.file_list)

    def __getitem__(self, index):
        '''获取经过预处理后的图像的张量格式的数据'''

        img_path = self.file_list[index]
        img = Image.open(img_path)  # [高][宽]黑白

        #图像的预处理
        img_transformed = self.transform(img)

        return img_transformed

#创建DataLoader并确认操作

#创建文件列表
train_img_list=make_datapath_list()

# 创建Dataset
mean = (0.5,)
std = (0.5,)
train_dataset = GAN_Img_Dataset(
    file_list=train_img_list, transform=ImageTransform(mean, std))

# 创建DataLoader
batch_size = 64

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True)

#确认执行结果
batch_iterator = iter(train_dataloader)  # 转换成迭代器
imges = next(batch_iterator)   #取出位于第一位的元素
print(imges.size())  # torch.Size([64, 1, 64, 64])

#网络的初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        #Conv2d和ConvTranspose2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('BatchNorm') != -1:
        # BatchNorm2d的初始化
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


# 初始化的实施
G.apply(weights_init)
D.apply(weights_init)

print("网络已经成功地完成了初始化")

# 创建一个函数来学习模型


def train_model(G, D, dataloader, num_epochs):

    #确认是否可以使用GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("使用设备:", device)

    # 优化方法的设定
    g_lr, d_lr = 0.0001, 0.0004
    beta1, beta2 = 0.0, 0.9
    g_optimizer = torch.optim.Adam(G.parameters(), g_lr, [beta1, beta2])
    d_optimizer = torch.optim.Adam(D.parameters(), d_lr, [beta1, beta2])

    # 定义误差函数
    criterion = nn.BCEWithLogitsLoss(reduction='mean')

    # 使用硬编码的参数
    z_dim = 20
    mini_batch_size = 64

    #将网络变成GPU
    G.to(device)
    D.to(device)

    G.train()  # 将模型转换为训练模式
    D.train()  # 将模型转换为训练模式

    #如果网络相对固定,则开启加速
    torch.backends.cudnn.benchmark = True

    # 图像的张数
    num_train_imgs = len(dataloader.dataset)
    batch_size = dataloader.batch_size

    # 设置了迭代计数器
    iteration = 1
    logs = []

    #epoch循环
    for epoch in range(num_epochs):

        # 保存开始时间
        t_epoch_start = time.time()
        epoch_g_loss = 0.0  # epoch损失总和
        epoch_d_loss = 0.0  # epoch损失总和

        print('-------------')
        print('Epoch {}/{}'.format(epoch, num_epochs))
        print('-------------')
        print('(train)')

        # 以minibatch为单位从数据加载器中读取数据的循环
        for imges in dataloader:

            # --------------------
            # 1. 判别器D的学习
            # --------------------
            # 如果小批次的尺寸设置为1,会导致批次归一化处理产生错误,因此需要避免
            if imges.size()[0] == 1:
                continue

             #如果能使用GPU,则将数据送入GPU中
            imges = imges.to(device)

            #创建正确答案标签和伪造数据标签
           #在epoch最后的迭代中,小批次的数量会减少
            mini_batch_size = imges.size()[0]
            label_real = torch.full((mini_batch_size,), 1).to(device)
            label_fake = torch.full((mini_batch_size,), 0).to(device)

           #对真正的图像进行判定
            d_out_real, _ = D(imges)

             #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images)

            #计算误差
            d_loss_real = criterion(d_out_real.view(-1), label_real.float())
            d_loss_fake = criterion(d_out_fake.view(-1), label_fake.float())
            d_loss = d_loss_real + d_loss_fake

            #反向传播处理
            g_optimizer.zero_grad()
            d_optimizer.zero_grad()

            d_loss.backward()
            d_optimizer.step()

            # --------------------
            # 2.生成器G的学习
            # --------------------
           #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images)

            #计算误差
            g_loss = criterion(d_out_fake.view(-1), label_real.float())

           #反向传播处理
            g_optimizer.zero_grad()
            d_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()

            # --------------------
            # 3. 记录结果
            # --------------------
            epoch_d_loss += d_loss.item()
            epoch_g_loss += g_loss.item()
            iteration += 1

        #epoch的每个phase的loss和准确率
        t_epoch_finish = time.time()
        print('-------------')
        print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f}'.format(
            epoch, epoch_d_loss/batch_size, epoch_g_loss/batch_size))
        print('timer:  {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))
        t_epoch_start = time.time()

    
    print("总迭代次数:", iteration)

    return G, D

# 进行训练和验证
num_epochs = 300
G_update, D_update = train_model(
    G, D, dataloader=train_dataloader, num_epochs=num_epochs)

# 将生成图像和训练数据可视化

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 输入的随机数生成
batch_size = 8
z_dim = 20
fixed_z = torch.randn(batch_size, z_dim)
fixed_z = fixed_z.view(fixed_z.size(0), fixed_z.size(1), 1, 1)
fake_images = G_update(fixed_z.to(device))

# 训练数据
batch_iterator = iter(train_dataloader) #转换成迭代器
imges = next(batch_iterator) #提取第1个要素


#图像的可视化处理
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #上层显示测试图像
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    #下层显示生成图像
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray')
    
def Anomaly_score(x, fake_img, D, Lambda=0.1):

    #求测试图像x和生成图像fake_img的像素级差的绝对值,并对每个迷你批求和
    residual_loss = torch.abs(x-fake_img)
    residual_loss = residual_loss.view(residual_loss.size()[0], -1)
    residual_loss = torch.sum(residual_loss, dim=1)

    # 将测试图像x和生成图像fake_img输入到识别器D,取出特征量
    _, x_feature = D(x)
    _, G_feature = D(fake_img)

    # 求测试图像x和生成图像fake_img的特征量之差的绝对值,对每个迷你批次求和
    discrimination_loss = torch.abs(x_feature-G_feature)
    discrimination_loss = discrimination_loss.view(
        discrimination_loss.size()[0], -1)
    discrimination_loss = torch.sum(discrimination_loss, dim=1)

    # 将两种损失对每个迷你批进行加法运算
    loss_each = (1-Lambda)*residual_loss + Lambda*discrimination_loss

    #求迷你批的全部损失
    total_loss = torch.sum(loss_each)

    return total_loss, loss_each, residual_loss

# 创建测试用的DataLoader


def make_test_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(5):
        img_path = "./data/test/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test/img_2_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list


# 制作文件列表
test_img_list = make_test_datapath_list()

# 制作Dataset
mean = (0.5,)
std = (0.5,)
test_dataset = GAN_Img_Dataset(
    file_list=test_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 5

test_dataloader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=False)

# 测试数据的确认
batch_iterator = iter(test_dataloader)  # 转换成迭代器
imges = next(batch_iterator)  

# 取出第一个迷你批次

fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

# 想检测异常的图像
x = imges[0:5]
x = x.to(device)

# 用于生成想要异常检测的图像的初始随机数
z = torch.randn(5, 20).to(device)
z = z.view(z.size(0), z.size(1), 1, 1)

# 変将requires_grad设为True,使得变量z可以求导数
z.requires_grad = True

#求z的优化函数,以便能够更新变量z
z_optimizer = torch.optim.Adam([z], lr=1e-3)


#求z
for epoch in range(5000+1):
    fake_img = G_update(z)
    loss, _, _ = Anomaly_score(x, fake_img, D_update, Lambda=0.1)

    z_optimizer.zero_grad()
    loss.backward()
    z_optimizer.step()

    if epoch % 1000 == 0:
        print('epoch {} || loss_total:{:.0f} '.format(epoch, loss.item()))

# 生成图像
fake_img = G_update(z)

# 要求损失
loss, loss_each, residual_loss_each = Anomaly_score(
    x, fake_img, D_update, Lambda=0.1)

#损失的计算总损失
loss_each = loss_each.cpu().detach().numpy()
print("total loss:", np.round(loss_each, 0))

# 图像可视化
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    # 把测试数据放在上层
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    # 在下层显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_img[i][0].cpu().detach().numpy(), 'gray')

可以看 2 的损失值最高,由此可判断 2 为异常图片。
在这里插入图片描述

Efficient GAN

AnoGAN 模型中,最重要的是 z 的取值,对z 的取值也有新的方法,其中一种就是 Efficient GAN,它优化了z 值的更新和学习时间。Efficient GAN是通过编码器的方式来对 z 值进行计算,Encoder通过 BiGAN 机制将图像于其关联在一起。

Efficient GAN 实现

通过 Efficient GAN 实现网络,并进行训练和验证。

# 导入软件包
import random
import math
import time
import pandas as pd
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import transforms

# Setup seeds
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)

class Generator(nn.Module):

    def __init__(self, z_dim=20):
        super(Generator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Linear(z_dim, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(inplace=True))

        self.layer2 = nn.Sequential(
            nn.Linear(1024, 7*7*128),
            nn.BatchNorm1d(7*7*128),
            nn.ReLU(inplace=True))

        self.layer3 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=128, out_channels=64,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))

        self.last = nn.Sequential(
            nn.ConvTranspose2d(in_channels=64, out_channels=1,
                               kernel_size=4, stride=2, padding=1),
            nn.Tanh())
        #注意 :由于是黑白图像,因此输出通道数量为 1

    def forward(self, z):
        out = self.layer1(z)
        out = self.layer2(out)

        #为了能置入卷积层中,需要对张量进行变形
        out = out.view(z.shape[0], 128, 7, 7)
        out = self.layer3(out)
        out = self.last(out)

        return out

#确认执行结果
import matplotlib.pyplot as plt
%matplotlib inline

G = Generator(z_dim=20)
G.train()

#输入的随机数
#由于要进行批次归一化处理,因此将小批次数设置为 2 以上
input_z = torch.randn(2, 20)

#输出伪造图像
fake_images = G(input_z)  # torch.Size([2, 1, 28, 28])
img_transformed = fake_images[0][0].detach().numpy()
plt.imshow(img_transformed, 'gray')
plt.show()

class Discriminator(nn.Module):

    def __init__(self, z_dim=20):
        super(Discriminator, self).__init__()

        #图像这边的输入处理
        self.x_layer1 = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))
      #注意 :由于是黑白图像,因此输入通道数量为 1

        self.x_layer2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=4,
                      stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.1, inplace=True))

      #随机数这边的输入处理
        self.z_layer1 = nn.Linear(z_dim, 512)

        #最终的判定
        self.last1 = nn.Sequential(
            nn.Linear(3648, 1024),
            nn.LeakyReLU(0.1, inplace=True))

        self.last2 = nn.Linear(1024, 1)

    def forward(self, x, z):

        #图像这边的输入处理
        x_out = self.x_layer1(x)
        x_out = self.x_layer2(x_out)

       #随机数这边的输入处理
        z = z.view(z.shape[0], -1)
        z_out = self.z_layer1(z)

        #将x_out与z_out连接在一起,交给全连接层进行判定
        x_out = x_out.view(-1, 64 * 7 * 7)
        out = torch.cat([x_out, z_out], dim=1)
        out = self.last1(out)

        feature = out  #最后将通道集中到一个特征量中
        feature = feature.view(feature.size()[0], -1)   #转换为二维

        out = self.last2(out)

        return out, feature


#确认执行结果
D = Discriminator(z_dim=20)

#生成伪造图像
input_z = torch.randn(2, 20)
fake_images = G(input_z)

#将伪造图像输入判定器D中
d_out, _ = D(fake_images, input_z)

#将输出结果d_out乘以Sigmoid,以将其转换为0~1的值
print(nn.Sigmoid()(d_out))


class Encoder(nn.Module):

    def __init__(self, z_dim=20):
        super(Encoder, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3,
                      stride=1),
            nn.LeakyReLU(0.1, inplace=True))
        #把图像转换成z

        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3,
                      stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer3 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3,
                      stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.1, inplace=True))

        #到这里为止,图像的尺寸为7像素×7像素
        self.last = nn.Linear(128 * 7 * 7, z_dim)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)

       #为了能放入FC中,对张量进行变形
        out = out.view(-1, 128 * 7 * 7)
        out = self.last(out)

        return out


#确认执行结果
E = Encoder(z_dim=20)

#输入的图像数据
x = fake_images  #fake_images是由上面的生成器G生成的

#将图像编码为z
z = E(x)

print(z.shape)
print(z)

def make_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(200):
        img_path = "./data/img_78_28size/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/img_78_28size/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list

class ImageTransform():
    """图像的预处理类"""

    def __init__(self, mean, std):
        self.data_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])

    def __call__(self, img):
        return self.data_transform(img)

class GAN_Img_Dataset(data.Dataset):
    """图像的Dataset类。继承PyTorch的Dataset类"""

    def __init__(self, file_list, transform):
        self.file_list = file_list
        self.transform = transform

    def __len__(self):
        '''返回图像的张数'''
        return len(self.file_list)

    def __getitem__(self, index):
        '''获取预处理图像的Tensor格式数据'''

        img_path = self.file_list[index]
        img = Image.open(img_path)  # [高][宽]黑白

        # 图像的预处理
        img_transformed = self.transform(img)

        return img_transformed

# 创建DataLoader并确认操作

#制作文件列表
train_img_list=make_datapath_list()

# Datasetを作成
mean = (0.5,)
std = (0.5,)
train_dataset = GAN_Img_Dataset(
    file_list=train_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 64

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True)

# 动作的确认
batch_iterator = iter(train_dataloader)  # 转换成迭代器
imges = next(batch_iterator)  # 找出第一个要素
print(imges.size())  # torch.Size([64, 1, 64, 64])

#创建用于训练模型的函数


def train_model(G, D, E, dataloader, num_epochs):

    #确认是否可以使用GPU加速
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("使用设备:", device)

    #设置最优化算法
    lr_ge = 0.0001
    lr_d = 0.0001/4
    beta1, beta2 = 0.5, 0.999
    g_optimizer = torch.optim.Adam(G.parameters(), lr_ge, [beta1, beta2])
    e_optimizer = torch.optim.Adam(E.parameters(), lr_ge, [beta1, beta2])
    d_optimizer = torch.optim.Adam(D.parameters(), lr_d, [beta1, beta2])

    #定义误差函数
    #BCEWithLogitsLoss是先将输入数据乘以Logistic,
    # 再计算二进制交叉熵
    criterion = nn.BCEWithLogitsLoss(reduction='mean')

    #对参数进行硬编码
    z_dim = 20
    mini_batch_size = 64

    #将网络载入GPU中
    G.to(device)
    E.to(device)
    D.to(device)

    G.train()  #将模型设置为训练模式
    E.train()  #将模型设置为训练模式
    D.train()  #将模型设置为训练模式

    #如果网络相对固定,则开启加速
    torch.backends.cudnn.benchmark = True

    #图像的张数
    num_train_imgs = len(dataloader.dataset)
    batch_size = dataloader.batch_size

    #设置迭代计数器
    iteration = 1
    logs = []

    # epoch循环
    for epoch in range(num_epochs):

        #保存开始时间
        t_epoch_start = time.time()
        epoch_g_loss = 0.0  #epoch的损失总和
        epoch_e_loss = 0.0  #epoch的损失总和
        epoch_d_loss = 0.0  #epoch的损失总和

        print('-------------')
        print('Epoch {}/{}'.format(epoch, num_epochs))
        print('-------------')
        print('(train)')

        #以minibatch为单位从数据加载器中读取数据的循环
        for imges in dataloader:

            #如果小批次的尺寸设置为1,会导致批次归一化处理产生错误,因此需要避免
            if imges.size()[0] == 1:
                continue

            #创建用于表示小批次尺寸为1和0的标签
            #创建正确答案标签和伪造数据标签
            #在epoch最后的迭代中,小批次的数量会减少
            mini_batch_size = imges.size()[0]
            label_real = torch.full((mini_batch_size,), 1).to(device)
            label_fake = torch.full((mini_batch_size,), 0).to(device)

            #如果能使用GPU,则将数据送入GPU中
            imges = imges.to(device)

            # --------------------
            # 1. 判别器D的学习
            # --------------------
            # 对真实的图像进行判定 
            z_out_real = E(imges)
            d_out_real, _ = D(imges, z_out_real)

            # 生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images, input_z)

            #计算误差
            d_loss_real = criterion(d_out_real.view(-1), label_real.float())
            d_loss_fake = criterion(d_out_fake.view(-1), label_fake.float())
            d_loss = d_loss_real + d_loss_fake

            #反向传播
            d_optimizer.zero_grad()
            d_loss.backward()
            d_optimizer.step()

            # --------------------
            # 2. 生成器G的学习
            # --------------------
            #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images, input_z)

            #计算误差
            g_loss = criterion(d_out_fake.view(-1), label_real.float())

            #反向传播
            g_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()

            # --------------------
            # 3. 编码器E的学习
            # --------------------
            #对真实图像的z进行推定
            z_out_real = E(imges)
            d_out_real, _ = D(imges, z_out_real)

            #计算误差
            e_loss = criterion(d_out_real.view(-1), label_fake.float())

            #反向传播
            e_optimizer.zero_grad()
            e_loss.backward()
            e_optimizer.step()

            # --------------------
            #4.记录
            # --------------------
            epoch_d_loss += d_loss.item()
            epoch_g_loss += g_loss.item()
            epoch_e_loss += e_loss.item()
            iteration += 1

        #epoch的每个phase的loss和准确率
        t_epoch_finish = time.time()
        print('-------------')
        print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f} ||Epoch_E_Loss:{:.4f}'.format(
            epoch, epoch_d_loss/batch_size, epoch_g_loss/batch_size, epoch_e_loss/batch_size))
        print('timer:  {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))
        t_epoch_start = time.time()

    print("总迭代次数:", iteration)

    return G, D, E

#网络的初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
       #Conv2d和ConvTranspose2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('BatchNorm') != -1:
       # BatchNorm2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('Linear') != -1:
        #全连接层Linear的初始化
        m.bias.data.fill_(0)


#开始初始化
G.apply(weights_init)
E.apply(weights_init)
D.apply(weights_init)

print("网络已经成功地完成了初始化")

# 进行训练和验证
num_epochs = 1500
G_update, D_update, E_update = train_model(
    G, D, E, dataloader=train_dataloader, num_epochs=num_epochs)

#对生成图像与训练数据的可视化处理
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#生成输入的随机数
batch_size = 8
z_dim = 20
fixed_z = torch.randn(batch_size, z_dim)
fake_images = G_update(fixed_z.to(device))

#训练数据
batch_iterator = iter(train_dataloader)  #转换成迭代器
imges = next(batch_iterator)  #取出最开头的元素


#输出
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在上层中显示训练数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    #在下层中显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray')

# ·制作测试用的Dataloader


def make_test_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # ·保存图像文件路径

    for img_idx in range(5):
        img_path = "./data/test_28size/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test_28size/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test_28size/img_2_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list


#制作文件列表
test_img_list = make_test_datapath_list()

# 创建Dataset
mean = (0.5,)
std = (0.5,)
test_dataset = GAN_Img_Dataset(
    file_list=test_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 5

test_dataloader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=False)

#训练数据
batch_iterator = iter(test_dataloader)  #转换成迭代器
imges = next(batch_iterator)  #取出最开头的元素

fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在下层中显示生成数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

def Anomaly_score(x, fake_img, z_out_real, D, Lambda=0.1):

   #计算测试图像x与生成图像fake_img在像素层次上的差值的绝对值,并以小批次为单位进行求和计算
    residual_loss = torch.abs(x-fake_img)
    residual_loss = residual_loss.view(residual_loss.size()[0], -1)
    residual_loss = torch.sum(residual_loss, dim=1)

    # 将测试图像x和生成图像fake_img输入判别器D中,并取出特征量图

    _, x_feature = D(x, z_out_real)
    _, G_feature = D(fake_img, z_out_real)

    # 计算测试图像x与生成图像fake_img的特征量的差的绝对值,并以小批次为单位进行求和计算
    discrimination_loss = torch.abs(x_feature-G_feature)
    discrimination_loss = discrimination_loss.view(
        discrimination_loss.size()[0], -1)
    discrimination_loss = torch.sum(discrimination_loss, dim=1)

   #将每个小批次中的两种损失相加
    loss_each = (1-Lambda)*residual_loss + Lambda*discrimination_loss

    #对所有批次中的损失进行计算
    total_loss = torch.sum(loss_each)

    return total_loss, loss_each, residual_loss

#需要检测异常的图像
x = imges[0:5]
x = x.to(device)

#对监督数据的图像进行编码,转换成z,再用生成器G生成图像
z_out_real = E_update(imges.to(device))
imges_reconstract = G_update(z_out_real)

#计算损失值
loss, loss_each, residual_loss_each = Anomaly_score(
    x, imges_reconstract, z_out_real, D_update, Lambda=0.1)

#计算损失值,损失总和
loss_each = loss_each.cpu().detach().numpy()
print("total loss:", np.round(loss_each, 0))

#图像的可视化
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在上层中显示训练数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

   #在下层中显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(imges_reconstract[i][0].cpu().detach().numpy(), 'gray')


在这里插入图片描述

AnoGAN 模型可以进行异常图片的识别,这个例子比较简单,由于是单通道训练,随意模型训练比较快。如果是彩色图片,训练改时间会更久,在业务场景中可以调整阈值,例如Loss高于 250 为异常图片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/596165.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux-信号概念

1. 什么是信号 信号本质是一种通知机制&#xff0c;用户or操作系统通过发送信号通知进程&#xff0c;进程进行后续处理 在日常生活中就有很多例子&#xff0c;比如打游戏方面王者荣耀的“进攻”&#xff0c;“撤退”&#xff0c;“请求集合”&#xff0c;“干得漂亮&#xff01…

【一步一步了解Java系列】:探索Java基本类型转换的秘密

看到这句话的时候证明&#xff1a;此刻你我都在努力~ 加油陌生人~ 个人主页&#xff1a; Gu Gu Study ​​ 专栏&#xff1a;一步一步了解Java 喜欢的一句话&#xff1a; 常常会回顾努力的自己&#xff0c;所以要为自己的努力留下足迹。 如果喜欢能否点个赞支持一下&#…

第四百九十二回

文章目录 1. 概念介绍2. 使用方法2.1 SegmentedButton2.2 ButtonSegment 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"SearchBar组件"相关的内容&#xff0c;本章回中将介绍SegmentedButton组件.闲话休提&#xff0c;让我们一起Talk …

Java面试题:多线程3

CAS Compare and Swap(比较再交换) 体现了一种乐观锁的思想,在无锁情况下保证线程操作共享数据的原子性. 线程A和线程B对主内存中的变量c同时进行修改 在线程A中存在预期值a,修改后的更新值a1 在线程B中存在预期值b,修改后的更新值b1 当且仅当预期值和主内存中的变量值相等…

Llama3-Tutorial之XTuner微调Llama3个人小助手

Llama3-Tutorial之XTuner微调Llama3个人小助手 使用XTuner微调llama3模型。 参考&#xff1a; https://github.com/SmartFlowAI/Llama3-Tutorial 1. web demo部署 参考上一节内容已经完成web demo部署&#xff0c;进行对话测试, 当前回答基于llama3官方发布的模型进行推理生成&…

MySQL基础_5.多表查询

文章目录 一、多表连接1.1、笛卡尔积&#xff08;或交叉连接&#xff09; 二、多表查询&#xff08;SQL99语法&#xff09;2.1、内连接(INNER JOIN)2.2、内连接(INNER JOIN) 一、多表连接 多表查询&#xff0c;也称为关联查询&#xff0c;指两个或更多个表一起完成查询操作。 …

利用matplotlib和networkx绘制有向图[显示边的权重]

使用Python中的matplotlib和networkx库来绘制一个有向图&#xff0c;并显示边的权重标签。 1. 定义了节点和边&#xff1a;节点是一个包含5个节点的列表&#xff0c;边是一个包含各个边以及它们的权重的列表。 2. 创建了一个有向图对象 G。 3. 向图中添加节点和边。 4. 设置了…

Sarcasm detection论文解析 |基于情感背景和个人表达习惯的有效讽刺检测方法

论文地址 论文地址&#xff1a;https://link.springer.com/article/10.1007/s12559-021-09832-x#/ 论文首页 笔记框架 基于情感背景和个人表达习惯的有效讽刺检测方法 &#x1f4c5;出版年份:2022 &#x1f4d6;出版期刊:Cognitive Computation &#x1f4c8;影响因子:5.4 &…

光检测器——光纤通信学习笔记七

光检测器 光检测器的基本介绍 作用&#xff1a;把接受到的光信号转换成电信号 光接收器的灵敏度、光源的发光功率和光纤的损耗三者决定了光纤通信的传输距离&#xff1b; 光电二极管 光电转换的基本原理 之前提到&#xff0c;PN结由于内部载流子的扩散运动形成了内部电场&…

[Java EE] 多线程(八):CAS问题与JUC包

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (90平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

华为 二层交换机与防火墙连通上网实验

防火墙是一种网络安全设备&#xff0c;用于监控和控制网络流量。它可以帮助防止未经授权的访问&#xff0c;保护网络免受攻击和恶意软件感染。防火墙可以根据预定义的规则过滤流量&#xff0c;例如允许或阻止特定IP地址或端口的流量。它也可以检测和阻止恶意软件、病毒和其他威…

git与gitlab

目录 gitlab 下载与安装 重置管理员密码 gitlab命令 git远程gitlab相关命令 认证 补充 git git 分布式版本控制 安装 git的四个区域与文件的四个状态 使用git 常用命令 git 分布式管理系统 gitlab 企业私有库 github 公网共享库&#xff0c;全球…

hinge loss(损失函数)

Devise模型中用到hinge loss和相似性度量相结合计算损失&#xff0c;其损失如下&#xff1a; 举例说明该损失如何计算 运用公式2&#xff1a;&#xff08;常用公式2&#xff09;Devise模型用到的是公式2 参考&#xff1a;https://blog.csdn.net/weixin_43055882/article/det…

Java新手必看:快速上手FileOutPutStream类

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

OpenHarmony实战开发-应用侧调用前端页面函数

应用侧可以通过runJavaScript()方法调用前端页面的JavaScript相关函数。 在下面的示例中&#xff0c;点击应用侧的“runJavaScript”按钮时&#xff0c;来触发前端页面的htmlTest()方法。 前端页面代码。 <!-- index.html --> <!DOCTYPE html> <html> <…

58行代码把Llama 3扩展到100万上下文,任何微调版都适用 | 最新快讯

量子位公众号 QbitAI 堂堂开源之王 Llama 3&#xff0c;原版上下文窗口居然只有……8k&#xff0c;让到嘴边的一句“真香”又咽回去了。 在 32k 起步&#xff0c;100k 寻常的今天&#xff0c;这是故意要给开源社区留做贡献的空间吗&#xff1f; 开源社区当然不会放过这个机会&a…

Llama3-Tutorial之LMDeploy高效部署Llama3实践

Llama3-Tutorial之LMDeploy高效部署Llama3实践 Llama 3 近期重磅发布&#xff0c;发布了 8B 和 70B 参数量的模型&#xff0c;lmdeploy团队对 Llama 3 部署进行了光速支持&#xff01;&#xff01;&#xff01; 书生浦语和机智流社区同学光速投稿了 LMDeploy 高效量化部署 Llam…

对于子数组问题的动态规划

前言 先讲讲我对于这个问题的理解吧 当谈到解决子数组问题时&#xff0c;动态规划(DP)是一个强大的工具&#xff0c;它在处理各种算法挑战时发挥着重要作用。动态规划是一种思想&#xff0c;它通过将问题分解成更小的子问题并以一种递归的方式解决它们&#xff0c;然后利用这些…

【华为】IPSec VPN手动配置

【华为】IPSec VPN手动配置 拓扑配置ISP - 2AR1NAT - Easy IPIPSec VPN AR3NATIPsec VPN PC检验 配置文档AR1AR2 拓扑 配置 配置步骤 1、配置IP地址&#xff0c;ISP 路由器用 Lo0 模拟互联网 2、漳州和福州两个出口路由器配置默认路由指向ISP路由器 3、进行 IPsec VPN配置&…

Redission分布式锁 watch dog 看门狗机制

为了避免Redis实现的分布式锁超时&#xff0c;Redisson中引入了watch dog的机制&#xff0c;他可以帮助我们在Redisson实例被关闭前&#xff0c;不断的延长锁的有效期。 自动续租&#xff1a;当一个Redisson客户端实例获取到一个分布式锁时&#xff0c;如果没有指定锁的超时时…