Sarcasm detection论文解析 |基于情感背景和个人表达习惯的有效讽刺检测方法

论文地址

论文地址:https://link.springer.com/article/10.1007/s12559-021-09832-x#/

论文首页

笔记框架

 

基于情感背景和个人表达习惯的有效讽刺检测方法


📅出版年份:2022
📖出版期刊:Cognitive Computation
📈影响因子:5.4
🧑文章作者:Du Yu,Li Tong,Pathan Muhammad Salman,Teklehaimanot Hailay Kidu,Yang Zhen
📍 期刊分区:
JCR分区: Q1 中科院分区升级版: 计算机科学3区 中科院分区基础版: 工程技术2区 影响因子: 5.4 5年影响因子: 4.8 EI: 是 南农高质量: A


🔎 摘要:

讽刺在社交媒体中很常见,人们用它来间接表达自己情绪更强烈的观点。虽然它属于情感分析的一个分支,但传统的情感分析方法无法识别反讽修辞,因为它需要大量的背景知识。现有的讽刺检测方法主要集中于使用各种自然语言处理技术来分析讽刺的文本内容。本文认为,检测讽刺的本质问题是联系其上下文,包括回复目标文本的文本情绪和用户的表达习惯。提出了一种双通道卷积神经网络,不仅可以分析目标文本的语义,还可以分析其情感背景。此外,SenticNet还用于为长短期记忆(LSTM)模型添加常识。然后应用注意力机制来考虑用户的表达习惯。在多个公共数据集上进行了一系列实验,结果表明所提出的方法可以显着提高讽刺检测任务的性能。


🌐 研究目的:

提高讽刺检测任务的性能

研究问题:

通过添加模型注意力机制提取的用户表达习惯,是否可以提高讽刺文本的预测性能?

语义、情感和用户维度的结合能否提高讽刺文本的预测性能?

所提出的方法比现有的先进模型更好吗?

📰 研究背景:

现有的讽刺检测方法主要集中于使用各种自然语言处理技术来分析讽刺的文本内容。本文认为,检测讽刺的本质问题是检查其上下文,包括回复目标文本的文本情绪和用户的表达习惯。

🔬 研究方法:

本文遵循的研究方法主要分为三个部分,如图2所示。

情感上下文不协调特征嵌入

其中上下文情感信息被添加到词嵌入方法中,并使用CNN来分别提取评论的语义和情感特征。

用户表达习惯特征

其中使用Bi-LSTM对语义词向量进行编码,然后结合用户的注意力机制构建表达习惯的特征向量。

集成了多维信息

即语义、情感上下文和用户习惯


🔩 模型架构:

情感上下文不协调特征嵌入模型

输入层

SARC 数据集的注释用作 SCIFE 模型训练的输入序列。

线性层1

输入层输出序列词e(w1),e(w2)...e(wn),线性层1在串联后进行线性变换。

滑动窗口大小3是经过多次实验选择的合适参数。

hTanh层

为了使模型获得非线性特征,模型选择硬版本的双曲正切作为非线性函数。

线性层2

使用线性变换方法结合提取的情感特征并计算输入序列的情感分数。

softmax层

softmax 层用于标准化所有情感分数。

优化和学习

练目标是最小化训练数据中的交叉熵损失。

CNN架构

经过预处理后,通过Glove和SCIFE模型得到单词的向量表示。

双通道 CNN 模型考虑了两个独立的向量表示,即语义通道和情感通道。

窗口大小3是经过多次实验选择的合适参数。

利用卷积运算分别得到评论的语义隐藏序列表示hri和评论的情感不一致隐藏序列表示hci。

使用最大池化方法来保留显着特征,同时减少输出的维度。

用户表达习惯特征工程

将常识向量 μt 添加到 LSTM 每个时间节点的输入门、遗忘门和输出门。

当前的研究中使用了注意力机制,为句子中的不同单词分配不同的权重,并提取对特定用户的表达重要的单词。

最后,将信息聚合成句子的特征向量。

这里根据任务选择前馈神经网络作为评分函数的参数化方法。

讽刺分类

该模型使用非线性ReLU投影层来学习这三个特征向量的联合表示。

softmax 层用于标准化所有预测标签。

所提出的神经网络模型经过端到端训练,以优化标准二元交叉熵损失函数。


🧪 实验:

 📇  数据集:

Twitter、Reddit

验证上下文的情感不协调作为讽刺特征在不同主题上是普遍存在的。

 📏 评估指标:

 📉  优化器&超参数:

 💻  实验设备:

所有实验均使用 TensorFlow 实施。

 📊  消融实验:

图6、图7

 📋  实验结果:

在不同的数据集上,使用Bi-LSTM和attention结合获得的F1-score均高于LSTM模型获得的F1-score。

由此可见,一条评论是否讽刺,与发表该评论的作者有很大关系。

三种特征相结合的模型具有最好的性能。多维特征的组合可以挖掘文本的复杂特征,更有利于判断文本是否含有反讽成分。


🚩 研究结论:

本文提出了一种结合语义、情感和多维用户信息的讽刺检测框架。首先,使用 CNN 提取评论的语义特征。然后,将影响上下文的不一致信息添加到词嵌入模型中。将得到的词向量作为CNN的输入,获取评论的情感特征。随后,利用Bi-LSTM结合常识情感和注意力,提取评论中特定用户的表达特征。最后,通过神经网络对三个维度的信息进行拼接和训练。在多个标准数据集上对所提出的模型进行了评估,结果表明,与其他先进方法相比,所提出的模型取得了显着的改进。


📝 总结

💡 创新点:

本文提出了一种采用双通道结构设计的神经网络模型,将情感背景和个人表达习惯结合到讽刺检测中。对于讽刺这样的细粒度情绪,添加常识可以提高模型的预测能力。

基于卷积神经网络(CNN)的情感上下文不一致特征嵌入方法,可以综合提取目标上下文的语义和情感特征。

基于双向LSTM(Bi-LSTM)方法的模型,结合常识和注意力机制,全面表征用户表达习惯的特征。

 ⚠ 局限性:

 🔧 改进方法:

 🖍️ 知识补充:

SenticNet 和 AffectiveSpace 是将常识纳入长短期记忆 (LSTM) 模型的依据。

之前使用基于深度学习的模型来检测讽刺的研究中使用了两种方法,其中包括分析对话上下文以及分析用户的评论和心理状态。

自然语言工具包(NLTK)是一种自然语言情感分析工具,用于分别预测r和c的情感极性。

HTanh它的优点是计算成本略低(与双曲正切相比),而泛化保持不变[31]。

与Word2vec[33]相比,Glove具有更快的训练速度和良好的性能。

卷积运算通常用于合成 n-gram 信息[34]。

LSTM[14]由于其在序列建模方面的优异性能而被广泛应用于文本挖掘。为了解决长期依赖问题,LSTM 架构引入了一个可以长时间保存单元状态的存储单元。

[38]中使用的哨兵向量,允许模型灵活地决定是否关注这一常识。

根据阿米尔的研究[3],不同用户表达的同一句话可能具有不同的讽刺意义。


💬 讨论:

所提出的方法对于不同的 SARC 主题数据集表现出不同的分类性能。对于政治主题,性能提升较小,而对于电影和技术主题数据集,性能提升明显。究其原因,在于不同的题材具有不同的讽刺特征。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/596153.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

光检测器——光纤通信学习笔记七

光检测器 光检测器的基本介绍 作用:把接受到的光信号转换成电信号 光接收器的灵敏度、光源的发光功率和光纤的损耗三者决定了光纤通信的传输距离; 光电二极管 光电转换的基本原理 之前提到,PN结由于内部载流子的扩散运动形成了内部电场&…

[Java EE] 多线程(八):CAS问题与JUC包

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏:🍕 Collection与数据结构 (90平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 🧀Java …

华为 二层交换机与防火墙连通上网实验

防火墙是一种网络安全设备,用于监控和控制网络流量。它可以帮助防止未经授权的访问,保护网络免受攻击和恶意软件感染。防火墙可以根据预定义的规则过滤流量,例如允许或阻止特定IP地址或端口的流量。它也可以检测和阻止恶意软件、病毒和其他威…

git与gitlab

目录 gitlab 下载与安装 重置管理员密码 gitlab命令 git远程gitlab相关命令 认证 补充 git git 分布式版本控制 安装 git的四个区域与文件的四个状态 使用git 常用命令 git 分布式管理系统 gitlab 企业私有库 github 公网共享库,全球…

hinge loss(损失函数)

Devise模型中用到hinge loss和相似性度量相结合计算损失,其损失如下: 举例说明该损失如何计算 运用公式2:(常用公式2)Devise模型用到的是公式2 参考:https://blog.csdn.net/weixin_43055882/article/det…

Java新手必看:快速上手FileOutPutStream类

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一…

OpenHarmony实战开发-应用侧调用前端页面函数

应用侧可以通过runJavaScript()方法调用前端页面的JavaScript相关函数。 在下面的示例中&#xff0c;点击应用侧的“runJavaScript”按钮时&#xff0c;来触发前端页面的htmlTest()方法。 前端页面代码。 <!-- index.html --> <!DOCTYPE html> <html> <…

58行代码把Llama 3扩展到100万上下文,任何微调版都适用 | 最新快讯

量子位公众号 QbitAI 堂堂开源之王 Llama 3&#xff0c;原版上下文窗口居然只有……8k&#xff0c;让到嘴边的一句“真香”又咽回去了。 在 32k 起步&#xff0c;100k 寻常的今天&#xff0c;这是故意要给开源社区留做贡献的空间吗&#xff1f; 开源社区当然不会放过这个机会&a…

Llama3-Tutorial之LMDeploy高效部署Llama3实践

Llama3-Tutorial之LMDeploy高效部署Llama3实践 Llama 3 近期重磅发布&#xff0c;发布了 8B 和 70B 参数量的模型&#xff0c;lmdeploy团队对 Llama 3 部署进行了光速支持&#xff01;&#xff01;&#xff01; 书生浦语和机智流社区同学光速投稿了 LMDeploy 高效量化部署 Llam…

对于子数组问题的动态规划

前言 先讲讲我对于这个问题的理解吧 当谈到解决子数组问题时&#xff0c;动态规划(DP)是一个强大的工具&#xff0c;它在处理各种算法挑战时发挥着重要作用。动态规划是一种思想&#xff0c;它通过将问题分解成更小的子问题并以一种递归的方式解决它们&#xff0c;然后利用这些…

【华为】IPSec VPN手动配置

【华为】IPSec VPN手动配置 拓扑配置ISP - 2AR1NAT - Easy IPIPSec VPN AR3NATIPsec VPN PC检验 配置文档AR1AR2 拓扑 配置 配置步骤 1、配置IP地址&#xff0c;ISP 路由器用 Lo0 模拟互联网 2、漳州和福州两个出口路由器配置默认路由指向ISP路由器 3、进行 IPsec VPN配置&…

Redission分布式锁 watch dog 看门狗机制

为了避免Redis实现的分布式锁超时&#xff0c;Redisson中引入了watch dog的机制&#xff0c;他可以帮助我们在Redisson实例被关闭前&#xff0c;不断的延长锁的有效期。 自动续租&#xff1a;当一个Redisson客户端实例获取到一个分布式锁时&#xff0c;如果没有指定锁的超时时…

笔记86:关于【#ifndef + #define + #endif】的用法

当你在编写一个头文件&#xff08;例如 pid_controller.h&#xff09;时&#xff0c;你可能会在多个源文件中包含它&#xff0c;以便在这些源文件中使用该头文件定义的函数、类或其他声明。如果你在多个源文件中都包含了同一个头文件&#xff0c;那么当你将整个工程统一编译&am…

银行卡实名认证API接口快速对接

银行卡实名认证API接口又叫银行卡核验类API接口、银行卡验证类API接口、银联核验类API接口,根据入参字段不同&#xff0c;分银行卡二要素验证API接口&#xff0c;银行卡三要素验证API接口&#xff0c;银行卡四要素验证API接口。其中&#xff0c;银行卡二要素验证API接口是验证开…

锂电池SOH估计 | Matlab实现基于ALO-SVR模型的锂电池SOH估计

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 锂电池SOH估计 | Matlab实现基于ALO-SVR模型的锂电池SOH估计 蚁狮优化支持向量机锂电池健康状态SOH估计&#xff1b; 具体流程如下&#xff1b; 1、分析锂离子电池老化数据集&#xff0c;从中选取具有代表电池性能衰减…

【自用】了解移动存储卡的基本信息

前言 本文是看B站视频做的一个简单笔记&#xff0c;方便日后自己快速回顾&#xff0c;内容主要介绍了存储卡基本参数&#xff0c;了解卡面上的数字、图标代表的含义。对于日后如何挑选判断一张存储卡的好坏、判别一张存储卡是否合格有一定帮助。 视频参考链接&#xff1a;【硬…

深入剖析Tomcat(六) Tomcat各组件的生命周期控制

Catalina中有很多组件&#xff0c;像上一章提到的四种容器&#xff0c;载入器&#xff0c;映射器等都是一种组件。每个组件在对外提供服务之前都需要有个启动过程&#xff1b;组件在销毁之前&#xff0c;也需要有个关闭过程&#xff1b;例如servlet容器关闭时&#xff0c;需要调…

OpenNJet应用引擎——云原生时代的Web服务新选择

文章目录 OpenNJet应用引擎——云原生时代的Web服务新选择引言&#xff1a;数字化转型的推动力&#xff1a;OpenNJet应用引擎为什么选择OpenNJet&#xff1f; OpenNJet的核心优势1. 云原生功能增强2. 安全加固3. 代码重构与性能优化4. 动态加载机制5. 多样化的产品形态6. 易于集…

产业空间集聚DO指数计算

1.前言 创始人 :Duranton and Overman&#xff08;2005&#xff09; 目前应用较多的产业集聚度量指数主要基于两类&#xff0c;一是根据不同空间地理单元中产业经济规模的均衡性进行构造&#xff0c;如空间基尼系数与EG指数&#xff1b;二是基于微观企业地理位置信息形成的产业…

嵌入式系统应用-拓展-FLASH之操作 SFUD (Serial Flash Universal Driver)之KEIL应用

这里已经假设SFUD代码已经移植到工程下面成功了&#xff0c;如果读者对SFUD移植还不了解。可以参考笔者这篇文章&#xff1a;SFUD (Serial Flash Universal Driver)之KEIL移植 这里主要介绍测试和应用 1 硬件设计 这里采用windbond 的W25Q32这款芯片用于SFUD测试。 W25Q32是…