LLMs:《Better Faster Large Language Models via Multi-token Prediction》翻译与解读

LLMs:《Better & Faster Large Language Models via Multi-token Prediction》翻译与解读

目录

《Better & Faster Large Language Models via Multi-token Prediction》翻译与解读

Abstract

2、Method方法

Memory-efficient implementation 高效内存实现

Inference推理

Figure 2: Order of the forward/backward in an n-token prediction model with n = 2 heads. By performing the forward/backward on the heads in sequential order, we avoid materializing all unembedding layer gradients in memory simultaneously and reduce peak GPU memory usage.图2:在n = 2个头的n个标记预测模型中向前/向后的顺序。通过在头部上按顺序执行向前/向后操作,我们避免了同时在内存中实现所有非嵌入层梯度,并减少了GPU内存的峰值使用。

7、Conclusion结论


《Better & Faster Large Language Models via Multi-token Prediction》翻译与解读

地址

论文地址:https://arxiv.org/abs/2404.19737

时间

2024年4月30日

作者

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, Gabriel Synnaeve

总结

文章提出了一种新的训练语言模型的方法:多词预测。

背景痛点:当前语言模型主要采用下一词预测训练方式,但是这种方式容易过于局部化,忽略了更长程的依赖关系。下一词预测训练方式在训练和inference阶段上存在分布不匹配,训练时采用teacher forcing的方式,而inference时采用自回归生成方式,这会造成模型基础上预测能力的下降。

解决方案

>> 提出将语言模型训练任务从预测下一词扩展成预测多个下n词。在每个训练样本位置,语言模型需要同时预测下n个词。

>> 使用多头预测结构,共享主干网络提取上下文特征,每个词使用独立头进行预测。

>> 优化实现方式,采用顺序执行前向后向传播的方式,减小 GPU 内存占用。

核心特点

>> 相比下一词预测,多词预测任务可以强制模型学习长程依赖和选择性关键位置的信息。

>> 多词预测隐式上赋予关键选择位置更高权重,降低随机性,提高生成质量。

>> 从信息论角度看,多词预测任务强调了词与词之间的互信息,缓解了训练与inference阶段的分布不匹配问题。

优势

>> 在各种代码任务上效果明显,对大模型效果更佳,性能提升百分之几至十几点。

>> 可以在推理时利用多头实现自推测解码,速度可提升2-3倍。

>> 对小规模算法性任务也有明显帮助,优于单纯增加模型规模。

>> 在自然语言处理任务上,多词预测预训练模型在生成任务上优于下一词预测,在选择型任务上效果一致。

总之,这篇文章提出了一种简单而有效的多词预测训练任务,可以有效解决当前语言模型训练的一些问题,在很多下游任务上获得明显性能提升。

持续更新中……

Abstract

Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language mod-els to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following n tokens using n independent output heads, operating on top of a shared model trunk. Considering multi-token pre-diction as an auxiliary training task, we measure improved downstream capabilities with no over-head in training time for both code and natural language models. The method is increasingly use-ful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are es-pecially pronounced on generative benchmarks like coding, where our models consistently out-perform strong baselines by several percentage points. Our 13B parameter models solves 12 %more problems on HumanEval and 17 % more on MBPP than comparable next-token models. Ex-periments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to 3× faster at inference, even with large batch sizes.

像GPT和Llama这样的大型语言模型是用下一个令牌预测损失来训练的。在这项工作中,我们建议训练语言模型一次预测多个未来标记可以提高样本效率。更具体地说,在训练语料库中的每个位置,我们要求模型使用n个独立的输出头,基于共享的模型主干预测接下来的n个词元。将多词元预测视为一项辅助训练任务,我们对代码和自然语言模型在没有训练时间开销的情况下改进的下游能力进行了度量。这种方法对于更大的模型尺寸非常有用,并且在多次训练时期保持其吸引力。在诸如编码等生成性基准测试中,我们的模型比强基线模型性能高出几个百分点。我们的130亿参数模型在HumanEval上解决问题的能力提高了12%,在MBPP上提高了17%,超过了类似的下一个词元模型。在小型算法任务上的实验表明,多词元预测有利于归纳头和算法推理能力的发展。作为一个额外的好处,使用4个令牌预测训练的模型在推理时速度提高了3倍,即使是在大批量的情况下。

2、Method方法

Standard language modeling learns about a large text corpus x1, . . . xT by implementing a next-token prediction task. Formally, the learning objective is to minimize the cross-entropy loss

where Pθ is our large language model under training, as to maximize the probability of xt+1 as the next future token, given the history of past tokens xt:1 = xt, . . . , x1.

标准语言建模学习一个大型文本语料库x1,…通过实现下一个令牌预测任务。形式上,学习目标是最小化交叉熵损失

其中Pθ是我们在训练中的大型语言模型,为了最大化xt+1作为下一个未来标记的概率,给定过去标记xt的历史:1 = xt,…x1。

In this work, we generalize the above by implementing a multi-token prediction task, where at each position of the training corpus, the model is instructed to predict n future tokens at once. This translates into the cross-entropy loss

To make matters tractable, we assume that our large lan-guage model Pθ employs a shared trunk to produce a latent representation zt:1 of the observed context xt:1, then fed into n independent heads to predict in parallel each of the n future tokens (see Figure 1). This leads to the follow-ing factorization of the multi-token prediction cross-entropy loss:

在这项工作中,我们通过实现一个多标记预测任务来推广上述内容,其中在训练语料库的每个位置,指示模型一次预测n个未来的标记。这转化为交叉熵损失

为了使问题易于处理,我们假设我们的大型语言模型Pθ使用共享主干来产生观察到的上下文xt:1的潜在表示zt:1,然后将其输入n个独立的头部,以并行地预测n个未来标记(见图1)。这导致了以下多标记预测交叉熵损失的分解:

In practice, our architecture consists of a shared transformer trunk fs producing the hidden representation zt:1 from the observed context xt:1, n independent output heads imple-mented in terms of transformer layers fhi , and a shared unembedding matrix fu. Therefore, to predict n future tokens, we compute:

for i = 1, . . . n, where, in particular, Pθ(xt+1 | xt:1) is our next-token prediction head. See Appendix B for other variations of multi-token prediction architectures.

在实践中,我们的体系结构包括一个共享的变压器主干fs,从观察到的上下文xt:1产生隐藏表示zt:1, n个根据变压器层fhi实现的独立输出头,以及一个共享的非嵌入矩阵fu。因此,为了预测n个未来的代币,我们计算:

对于I = 1,…n,其中,特别地,Pθ(xt+1 | xt:1)是我们的下一个标记预测头。参见附录B了解多令牌预测架构的其他变体。

Memory-efficient implementation 高效内存实现

One big challenge in training multi-token predictors is reducing their GPU mem-ory utilization. To see why this is the case, recall that in current LLMs the vocabulary size V is much larger than the dimension d of the latent representation—therefore, logit vectors become the GPU memory usage bottleneck. Naive implementations of multi-token predictors that materialize all logits and their gradients, both of shape (n, V ), severely limit the allowable batch-size and average GPU memory utilization. Because of these reasons, in our architecture we propose to carefully adapt the sequence of forward and backward operations, as illustrated in Figure 2. In particular, after the forward pass through the shared trunk fs, we se-quentially compute the forward and backward pass of each independent output head fi, accumulating gradients at the trunk. While this creates logits (and their gradients) for the output head fi, these are freed before continuing to the next output head fi+1, requiring the long-term storage only of the d-dimensional trunk gradient ∂Ln/∂fs. In sum, we have reduced the peak GPU memory utilization from O(nV + d) to O(V + d), at no expense in runtime (Table S5).

训练多令牌预测器的一大挑战是降低它们的GPU内存利用率。要了解为什么会出现这种情况,回想一下,在当前的llm中,词汇表大小V远大于潜在表示的维数d——因此,logit向量成为GPU内存使用的瓶颈。多标记预测器的朴素实现将所有logits及其梯度(形状都是(n, V))物化,严重限制了允许的批处理大小和平均GPU内存利用率。由于这些原因,在我们的体系结构中,我们建议仔细调整向前和向后操作的顺序,如图2所示。特别地,在前向通过共享干线fs后,我们依次计算每个独立输出头fi的前向和后向通过,在干线处累积梯度。虽然这会为输出头fi创建logits(及其梯度),但在继续到下一个输出头fi+1之前,这些logits会被释放,只需要长期存储d维主干梯度∂Ln/∂fs。总而言之,我们已经将GPU内存利用率峰值从0 (nV + d)降低到0 (V + d),而在运行时没有任何开销(表S5)。

Inference推理

During inference time, the most basic use of the proposed architecture is vanilla next-token autoregressive prediction using the next-token prediction head Pθ(xt+1 |xt:1), while discarding all others. However, the additional output heads can be leveraged to speed up decoding from the next-token prediction head with self-speculative decoding methods such as blockwise parallel decoding (Stern et al., 2018)—a variant of speculative decoding (Leviathan et al., 2023) without the need for an additional draft model—and speculative decoding with Medusa-like tree attention (Cai et al., 2024).

在推理期间,所提出的架构的最基本用途是使用下一个令牌预测头Pθ(xt+1 |xt:1)进行vanilla下一个令牌自回归预测,同时丢弃所有其他令牌。然而,可以利用额外的输出头来加速从下一个令牌预测头的解码,使用自推测解码方法,如块并行解码(Stern等人,2018)-一种推测解码的变体(Leviathan等人,2023),而不需要额外的草案模型-以及具有类似美杜莎树注意力的推测解码(Cai等人,2024)。

Figure 2: Order of the forward/backward in an n-token prediction model with n = 2 heads. By performing the forward/backward on the heads in sequential order, we avoid materializing all unembedding layer gradients in memory simultaneously and reduce peak GPU memory usage.图2:在n = 2个头的n个标记预测模型中向前/向后的顺序。通过在头部上按顺序执行向前/向后操作,我们避免了同时在内存中实现所有非嵌入层梯度,并减少了GPU内存的峰值使用。

7、Conclusion结论

We have proposed multi-token prediction as an improvement over next-token prediction in training language models for generative or reasoning tasks. Our experiments (up to 7B pa-rameters and 1T tokens) show that this is increasingly useful for larger models and in particular show strong improve-ments for code tasks. We posit that our method reduces distribution mismatch between teacher-forced training and autoregressive generation. When used with speculative de-coding, exact inference gets 3 times faster.

我们提出了多标记预测作为下一个标记预测的改进,用于生成或推理任务的训练语言模型。我们的实验(多达7B个参数和1T个令牌)表明,这对更大的模型越来越有用,特别是对代码任务有了很大的改进。我们假设我们的方法减少了教师强迫训练和自回归生成之间的分布不匹配。当与推测解码一起使用时,精确推理速度提高了3倍。

In future work we would like to better understand how to au-tomatically choose n in multi-token prediction losses. One possibility to do so is to use loss scales and loss balanc-ing (Défossez et al., 2022). Also, optimal vocabulary sizes for multi-token prediction are likely different from those for next-token prediction, and tuning them could lead to better results, as well as improved trade-offs between compressed sequence length and compute-per-byte expenses. Finally, we would like to develop improved auxiliary prediction losses that operate in embedding spaces (LeCun, 2022).

在未来的工作中,我们希望更好地理解如何在多令牌预测损失中自动选择n。这样做的一种可能性是使用损失尺度和损失平衡(dsamossez et al., 2022)。此外,多标记预测的最佳词汇表大小可能与下一个标记预测的最佳词汇表大小不同,对它们进行调优可能会产生更好的结果,并改进压缩序列长度和每字节计算费用之间的权衡。最后,我们希望开发在嵌入空间中运行的改进的辅助预测损失(LeCun, 2022)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/594547.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW数据库访问技术

LabVIEW数据库访问技术 在当前的信息化时代,数据管理与分析在各个领域中起着重要的作用。特别是在工业、科研等领域,对于数据的快速准确获取、处理和分析需求日益增加。LabVIEW作为一种图形化编程语言,以其直观、高效的特点,在自…

【数据分析】这些年我发过的微信朋友圈

TencentRecordAnalysisV1.0.3.zip 蓝奏云:链接:链接TencentRecordAnalysis (lanzoub.com)密码:9hww 朋友圈还是以本行业岩土、工作相关的内容居多。 对于一个不怎么发圈的人来说,这几天有点反常,这几天大概是我成功的开发了几个失败的GPT应用…

打造亚马逊爆款秘诀:流量、排名与自养号测评的完美结合

亚马逊是一个产品为王的平台,只要我们的产品好,就会有更多的流量,有流量还怕我们的产品卖不出去?身为新手我们店无流量该怎么办,今天教给你们五个获取流量的方法。 1.自然检索 那是我们常说的自然流量,通…

DBCHM 数据库 CHM 文档生成工具

介绍 DBCHM 是一款数据库文档生成工具! 该工具从最初支持chm文档格式开始,通过开源,集思广益,不断改进,又陆续支持word、excel、pdf、html、xml、markdown等文档格式的导出。 支持的数据库 SqlServerMySQLOraclePos…

拥抱新质生产力,助力新型工业化!CMM电子展暨IARS机器人展5月东莞盛大起航

2024年5月15-17日,东浩兰生会展集团旗下CMM电子展&IARS机器人展将在广东现代国际展览中心(东莞厚街)举办。展会面积达50000平方米,展示品牌700余个,同期论坛峰会30余场,预计专业观众超50000人次…

肆拾玖坊商业模式分析,新品牌如何采用合伙人模式起盘

坐标:厦门,我是易创客运营肖琳 深耕社交新零售行业10年,主要提供新零售系统工具及顶层商业模式设计、全案策划运营陪跑等。 比茅台盈利模式还牛逼的肆拾玖坊,所有男人都逃不出它的圈套!只靠49个男人,用一套…

软考信息系统项目管理师论文突然单独考,其实影响没有想象的大

五一假期的前一天,辽宁省软考办发布了一则通知,安排了辽宁省的软考批次安排,从标题看不出来有用的信息,但是干货是埋在正文中的。我先把辽宁软考办的全文给你附上如下,具体的解读后面我会一一道来。 敲重点来了&#x…

笔记13-OSError: [Errno 24] Too many open files

文章目录 参考文献失败尝试系列查看发现,似乎是因为线程数有限制 修改配置先查查看 增加文件数限制,然后使用命令运行(成功) 参考文献 Linux 最大可以打开多少文件描述符? OSError: [Errno 24] Too many open files错…

解决在C#中方向键对控件焦点的控制

不要犹豫直接把下面这个程序复制进去就好了,不用担心0个引用,哈哈,可以的 public partial class MainForm : Form {public MainForm(){InitializeComponent();}protected override bool ProcessDialogKey(Keys keyData){// 检查是否是方向键…

基于springboot实现实习管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现实习管理系统演示 摘要 近年来,信息化管理行业的不断兴起,使得人们的日常生活越来越离不开计算机和互联网技术。首先,根据收集到的用户需求分析,对设计系统有一个初步的认识与了解,确定实习管理系统…

【PX4-AutoPilot教程-TIPS】Matlab使用ROS Toolbox编译MAVROS2消息报错缺少geographic_msgs消息

Matlab使用ROS Toolbox编译MAVROS2消息报错缺少geographic_msgs消息的解决方法 问题描述解决方法 环境: MATLAB : R2022b ROS Toolbox : 1.6 Windows :Windows 10 22H2 ROS :ROS2 Foxy 问题描述 在使用Matlab的ROS Toolbox工具箱编译与…

JAVA基础之Swing窗体的几种布局

1、边框布局BorderLayout 特点:5个方位(东(East)南(north)西(west)北(south)中(center)) 是一种简单的布局策略。 使用时,应将其看成一个“组件”。 同样,首先应通…

VMware worksation 17 简易安装Centos8.2、Redhat8.2、Ubuntu16.04

系列文章目录 文章目录 系列文章目录前言一、VMware worksation 17 安装二、安装Centos8.2三、安装RHEL8.2四、安装Ubuntu16.04总结 前言 傻瓜式按照Linux系统,如果觉得简单,可以自定义设置,特别是配置一下磁盘空间大小,对以后排…

通过DataGrip将mysql表结构信息转存excel 复制select结果的insert插入语句

各位小伙伴们大家好,欢迎来到这个小扎扎的专栏 总结 | 提效 | 拓展,在这个系列专栏中记录了博主在学习期间总结的大块知识点,以及日常工作中遇到的各种技术点 ┗|`O′|┛ 🌆 内容速览 1 查询表结构信息,并…

我希望未来10年,人工智能可以帮我解决这4件小事

生活在一线大城市的我,现在几乎整天被大数据、人工智能、机器学习、智慧生活的词汇环绕立体包围着,让我时刻感觉到,再过10年,我们五一假期真的可以摆脱现在擦肩接踵的旅游盛况了。但我其实要求倒是没这么高,我真心希望…

AnaTraf 网络流量分析仪 - 网络性能检测与诊断(NPMD)

目录 网络流量回溯分析,快速定位故障 实时监控,洞察网络运行状况 性能分析,优化网络应用 即插即用,无需复杂配置 了解更多 近年来,随着互联网技术的不断发展,网络已经成为企业运营的基础设施。然而,复杂多变的网络环境也给企业的网络管理带来了新的挑战。如何快…

一部手机就能实现24小时AI实景自动无人直播:商业推广拓客进击的全新推广利器

随着科技的迅猛发展,AI实景自动无人直播软件正逐渐成为商家拓展业务的重要工具。其智能讲解、一键开播以及智能回复功能,使得商家能够高效地进行推广活动,而手机拍摄真实场景和自行搭建场景的灵活性,则赋予了直播画面更好的呈现效…

地下管线管网三维参数化建模软件MagicPipe3D V3.5

经纬管网建模系统MagicPipe3D(www.magic3d.net)自主安全可控,本地离线参数化构建三维管网模型(管道、接头、附属物等),输出标准3DTiles、Obj等格式,支持Cesium、Unreal、Unity等引擎可视化查询分…

10最佳数据恢复软件,用于恢复丢失的数据

有时,您无意中、无意识地或其他人故意删除了您重要且有价值的数据,这些数据可以是文档、视频或图片。或者由于某些令人毛骨悚然的软件,数据可能已损坏。避免这种令人痛苦的时刻的最好方法是定期备份您的数据,但以防万一。那该怎么…