Pandas入门篇(二)-------Dataframe篇4(进阶)(Dataframe的进阶用法)(机器学习前置技术栈)

目录

  • 概述
  • 一、复合索引
    • (一)创建具有复合索引的 DataFrame
      • 1. 使用 set_index 方法:
      • 2.在创建 DataFrame 时直接指定索引:
    • (二)使用复合索引进行数据选择和切片
    • (三)重置索引
    • (四)复合索引与分组操作
    • (五)unstack()函数
      • 1.参数
      • 2. 将多层索引转换为列
      • 2. 将列转换为行索引
      • 3. 分组聚合中的使用
    • 注意事项:
  • 二 、Dataframe分组语法进阶
    • (一)分组聚合多种写法
      • 1. 写法一:中括号形式, df[列名]
      • 2. 写法二:df.列名 直接实现.
      • 3. 写法三:结合 agg() 或者 aggregate()函数实现
      • 4. 写法四:还可以直接传入 numpy包下的 函数.
      • 5. 传入自定义函数
      • 6.agg 进行不同的聚合计算.
    • (二)分组转换(开窗+具体操作)
      • 1. 语法:
      • 2.常见用途
    • (三)分组过滤
      • 1.普通过滤:
      • 2. 分组后过滤
  • 四、透视表
    • (一)语法
    • (二)参数
    • (三)代码实现
  • 下篇内容

概述

经过前几篇的基础语法的学习,您已经掌握了Dataframe的基础操作。在掌握基础操作后,进一步探索其进阶用法能够让你更高效地处理和分析数据。
DataFrame的进阶用法涵盖了数据处理、探索、可视化和集成等多个方面。通过深入学习和实践,你将能够更充分地利用DataFrame的功能和优势,提升数据处理和分析的能力,为数据驱动的决策提供有力支持。(可视化将在matpoltlib中详细介绍)

一、复合索引

在 Pandas 中,DataFrame 的复合索引(也称为多级索引或层次化索引)允许在多个维度上对数据进行索引。这通常通过使用 MultiIndex 来实现,它可以通过多种方式创建,包括从多个列或数组、从元组列表等。复合索引特别有用于在数据集中表示多个分类变量,并允许进行高级的数据选择和聚合。

下面是一些关于如何在 Pandas 中使用 DataFrame 的复合索引的示例和解释:

(一)创建具有复合索引的 DataFrame

可以通过几种方式创建具有复合索引的 DataFrame:

1. 使用 set_index 方法:

可以从一个现有的 DataFrame 的列中创建复合索引。
代码实现:

import pandas as pd  
  
# 创建一个简单的 DataFrame  
df = pd.DataFrame({  
    'A': ['foo', 'foo', 'foo', 'bar', 'bar'],  
    'B': ['one', 'one', 'two', 'two', 'one'],  
    'C': ['small', 'large', 'large', 'small', 'small'],  
    'D': [1, 2, 2, 3, 3],  
    'E': [2, 4, 5, 5, 6]  
})  
  
# 从列 'A' 和 'B' 创建复合索引  
df_multiindex = df.set_index(['A', 'B'])  
df_multiindex

运行结果:
在这里插入图片描述

2.在创建 DataFrame 时直接指定索引:

在创建 DataFrame 时直接传递一个 MultiIndex。

# 创建多级索引  
index = pd.MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('bar', 'two')])  
  
# 创建一个简单的 DataFrame,并使用多级索引  
df_multiindex = pd.DataFrame({  
    'C': ['small', 'large', 'large', 'small'],  
    'D': [1, 2, 2, 3],  
    'E': [2, 4, 5, 6]  
}, index=index)  
df_multiindex

运行结果:
在这里插入图片描述

(二)使用复合索引进行数据选择和切片

有了复合索引,可以使用它们来方便地选择数据。

# 选择索引为 ('foo', 'one') 的行  
print(df_multiindex.loc[('foo', 'one')])  
  
# 选择所有 'foo' 行的 'D' 列  
print(df_multiindex.loc['foo']['D'])  
  
# 选择 'foo' 下 'one' 和 'two' 的所有行  
print(df_multiindex.loc[('foo', slice(None))])

运行结果:
在这里插入图片描述

(三)重置索引

如果不再需要复合索引,或者想要将其转换回普通的列,可以使用 reset_index 方法。

# 重置索引,将复合索引的级别作为普通列添加回 DataFrame  
df_reset = df_multiindex.reset_index()  
df_reset

运行结果:
在这里插入图片描述

(四)复合索引与分组操作

复合索引与 groupby 方法结合使用时特别强大,因为它允许基于多个键对数据进行分组。

# 使用复合索引进行分组并计算每组的平均值  
grouped = df_multiindex.groupby(level=[0, 1]).mean()  
grouped

运行结果:
在这里插入图片描述

(五)unstack()函数

unstack()函数是用于将一个多级索引(multi-index)的DataFrame或Series从一个层级转换到列中,或者从列中转换到另一个层级。这通常用于数据重塑,使得数据的展现形式更符合分析的需要。
当DataFrame或Series具有一个或多个层级索引时,unstack()函数可以将低层级的索引转换为列标题,同时保持高层级索引作为行索引。反之,如果unstack()函数用于具有多层列标题的DataFrame,则可以将低层级的列标题转换为行索引。

1.参数

  • level:整数或字符串,可选参数。指定要解包的层级。如果省略此参数,将解包所有分层。通过指定level,你可以控制将哪一层级的索引横向展开,而其余层级的索引保持不变。

  • fill_value:可选参数。用于替换缺失值的值。在解包索引的过程中,可能会出现某些位置没有对应数据的情况,此时可以使用fill_value参数来指定一个默认值填充这些缺失位置。

  • dropna:布尔值,可选参数。指定是否删除那些只包含缺失值的列。当解包索引后,有些列可能全部为缺失值,通过设置dropna=True,可以自动删除这些列,使数据更加整洁。

2. 将多层索引转换为列

# 创建一个具有多层索引的 DataFrame  
index = pd.MultiIndex.from_product([['A', 'B'], ['one', 'two'], ['x', 'y', 'z']])  

data = pd.Series(np.random.randn(12), index=index)  
print(data)
df = data.unstack([0, 1])  
  
df

在这个示例中,我们创建了一个具有三层索引的Series对象,并使用unstack([0, 1])将前两层索引转换为列标题。
在这里插入图片描述

2. 将列转换为行索引

df
#%%
# 创建一个具有多层索引的DataFrame  
arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),  
          np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']),  
          np.array(['small', 'large', 'large', 'small', 'small', 'large', 'large', 'small'])]  
  
# 将这些数组转换为MultiIndex  
index = pd.MultiIndex.from_arrays(arrays, names=('first', 'second', 'third'))  
  
# 创建一个简单的DataFrame  
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])  
  
print("原始DataFrame:")  
print(df)  
  
# 使用unstack将'third'层级的索引转换为列  
df_unstacked = df.unstack('third')  
  
print("\n使用unstack后的DataFrame:")  
df_unstacked

运行结果:
在这里插入图片描述
在这个示例中,我们创建了一个具有三层索引的DataFrame,并使用unstack(‘third’)将第三层索引(‘third’)转换为列。

3. 分组聚合中的使用

unstack() 可以用来将分组后的结果从层级索引的形式转换为更宽格式的表格。

# 创建一个示例 DataFrame  
data = {  
    'A': ['foo', 'foo', 'foo', 'bar', 'bar'],  
    'B': ['one', 'one', 'two', 'two', 'one'],  
    'C': ['small', 'large', 'large', 'small', 'small'],  
    'D': [1, 2, 2, 3, 3],  
    'E': [2, 4, 5, 5, 6]  
}  
df = pd.DataFrame(data)  
  
# 根据 A 和 B 列进行分组,并对 D 列求和  
grouped = df.groupby(['A', 'B']).sum()  
  
print("分组聚合后的结果:")  
print(grouped)  
  
# 使用 unstack() 将 B 列的层级索引转换为列  
unstacked = grouped.unstack('B')  
  
print("\n使用 unstack() 后的结果:")  
print(unstacked)

代码实现:
在这里插入图片描述

注意事项:

  • unstack()函数不会修改原始DataFrame或Series,而是返回一个新的对象。
  • 如果level参数指定的层级不存在,会引发KeyError。
  • 如果解包后的数据结构中存在重复的列标题,Pandas会保留所有的数据,并使用多级列标题来区分。

二 、Dataframe分组语法进阶

(一)分组聚合多种写法

首先我们先导入数据

import numpy as np
data = pd.read_csv('/export/data/pandas_data/gapminder.tsv',sep='\t')
data

数据样式:
在这里插入图片描述

1. 写法一:中括号形式, df[列名]

# 求不同洲的平均寿命
data.groupby('continent')['lifeExp'].mean()

运行结果:
在这里插入图片描述

2. 写法二:df.列名 直接实现.

# 写法2: df.列名 直接实现.
data.groupby('continent').lifeExp.mean()

运行结果:
在这里插入图片描述

3. 写法三:结合 agg() 或者 aggregate()函数实现

这两个函数完全一样, 并无任何区别.

# 写法3: 结合 agg() 或者 aggregate()函数实现, 这两个函数完全一样, 并无任何区别.
data.groupby('continent').lifeExp.agg('mean')         # 这个mean是 Pandas中的mean()函数, 要加: 引号包裹
data.groupby('continent').lifeExp.aggregate('mean')   

# 上述格式变形写法: {要操作的列1: 聚合函数, 要操作的列2: 聚合函数...}
data.groupby('continent').agg({'lifeExp':'mean'})        
data.groupby('continent').aggregate({'lifeExp':'mean'}) 

4. 写法四:还可以直接传入 numpy包下的 函数.

# 写法4: 还可以直接传入 numpy包下的 函数.
data.groupby('continent').lifeExp.agg(np.mean)            # 这里的np.mean是 Numpy中的mean()函数对象, 不要加引号
data.groupby('continent').agg({'lifeExp': np.mean}) 

5. 传入自定义函数

# 写法5: 传入自定义函数, 实现: 计算平均值. 
# 1. 自定义函数, 用于计算 某列值 的平均值.
def my_mean(col):
    # 该列平均值 = 该列数据和 / 该列数据个数 
    return col.sum() / col.size         # Series中: sum()函数, size: 属性

# 2. groupby分组聚合时, 可以传入: 自定义函数.
data.groupby('continent').lifeExp.agg(my_mean)            # 这里传入的是: 自定义函数对象, 不加引号.
data.groupby('continent').agg({'lifeExp': my_mean})    

运行结果:

6.agg 进行不同的聚合计算.

# 写法7: 分组后, 可以针对于 多列数据, 进行不同的聚合计算. 
# 需求: 根据年份分组, 计算: lifeExp(预期寿命)的平均值, pop(平均人口)的 最大值, gdpPercap(平均GDP) 的 中位数.
data.groupby('year').agg({'lifeExp': 'mean', 'pop': 'max', 'gdpPercap': 'median'})

运行结果:
在这里插入图片描述

(二)分组转换(开窗+具体操作)

transform()方法在Pandas库中是一个强大的工具,尤其在分组计算时。当对数据进行分组操作后,transform()方法允许对每个分组应用一个函数,并返回与原始DataFrame形状相同的结果。这对于在分组后进行标准化、填充缺失值、计算分组统计量等操作非常有用。

1. 语法:

当与groupby()结合使用时,transform()的语法基本保持不变:

grouped.transform(func, *args, **kwargs)

其中,grouped是一个通过groupby()方法得到的分组对象,func是你想要应用于每个分组的函数。

2.常见用途

  • 标准化:在每个分组内计算均值和标准差,然后用原始值减去均值并除以标准差,从而得到标准化的数据。
  • 填充缺失值:在每个分组内计算非缺失值的均值或中位数,并用这个值填充该分组内的缺失值。
    计算分组统计量:计算每个分组的均值、总和、最大值、最小值等,并将这些统计量广播回原始形状。
    示例:
    假设我们有一个包含销售数据的DataFrame,其中包含产品类别、销售额和利润等列,我们想要计算每个产品类别的销售额均值,并将这个均值填充到该类别下的每一行中:
# 创建一个简单的DataFrame  
df = pd.DataFrame({  
    'category': ['A', 'A', 'B', 'B', 'C', 'C'],  
    'sales': [100, 150, 75, 125, 50, 70],  
    'profit': [20, 30, 15, 25, 10, 14]  
})  
print('原表:')
print(df)
# 使用groupby和transform计算每组的销售额均值,并将结果广播回原始形状  
df['sales_mean_per_category'] = df.groupby('category')['sales'].transform('mean')  
print('转换之后的表:')
df

运行结果:
在这里插入图片描述

输出将是一个新的DataFrame,其中包含一个额外的列sales_mean_per_category,该列包含了每个产品类别的销售额均值,并且这个均值被填充到了该类别下的每一行中。

通过transform()方法,你可以轻松地在分组后对数据进行各种转换和操作,而无需改变原始数据的形状或结构。这使得它在数据清洗、预处理和特征工程等任务中非常有用。

(三)分组过滤

首先我们创建一个Dataframe

# 示例DataFrame  
import pandas as pd

df = pd.DataFrame({  
    'A': ['foo', 'foo', 'foo', 'bar', 'bar'],  
    'B': ['one', 'one', 'two', 'two', 'one'],  
    'C': ['small', 'large', 'large', 'small', 'small'],  
    'D': [1, 2, 2, 3, 3],  
    'E': [2, 4, 5, 5, 6]  
})  
df

运行结果:
在这里插入图片描述

1.普通过滤:

常见的是使用query或布尔索引来直接过滤DataFrame。

  • 使用query方法过滤:
# 选择列'D'的值大于2的行  
filtered_df = df.query('D > 2')  
filtered_df

运行结果:
在这里插入图片描述

  • 使用布尔索引过滤
# 选择列'D'的值大于2的行  
filtered_df = df[df['D'] > 2]  
filtered_df

运行结果:
在这里插入图片描述

2. 分组后过滤

分组后过滤组可用filter函数传入一个lambda函数或自定义函数,进行组的过滤

  • 传入lambda函数
# 查看按A分组的组内Dde平均值
c = df.groupby('A')[['D']].mean()
print(c)
# 过滤出按A分组的组内的平均值大于2的
df.groupby('A')['D'].filter(lambda x:x.mean()>2 )

运行结果:
在这里插入图片描述

  • 传入自定义函数
    注意,这里使用自定义函数的时候一定要return一个bool值,否则会报错
# 定义一个自定义函数,功能是guol出平均值大于2的
def my_func(col):
    if col.mean()>2:
        return True
    return False
df.groupby('A')['D'].filter(my_func) 

运行结果:
在这里插入图片描述
注意:
无论是apply函数还是transform函数还是filter函数,在传入一个自定函数的时候,只需要传入函数名,而非函数名+()

四、透视表

pivot_table函数是用于创建数据透视表(pivot table)的强大工具。数据透视表是一种可以对数据进行汇总、分析、探索和呈现的有效方式,它允许用户根据一个或多个键对数据进行重排,并对结果进行聚合运算。功能的同于excel的数据透视表相同。

(一)语法

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

(二)参数

  • data: DataFrame
    要进行透视的数据源。通常是一个DataFrame对象。
  • values: list-like, optional
    要进行聚合计算的列名。如果不提供此参数,那么会使用所有数值型列。
  • index: list-like, optional
    用作透视表行索引的列名或列名列表。
  • columns: list-like, optional
    用作透视表列标签的列名或列名列表。
  • aggfunc: function, str, list, or dict, default ‘mean’
    聚合函数或函数列表,用于计算每个组(由index和columns定义)的聚合值。可以是’mean’, ‘sum’, ‘count’, ‘min’, ‘max’, ‘var’, 'std’等字符串,或者是一个自定义函数。如果传入一个函数列表,那么会返回一个多层级的列标签。
  • fill_value: scalar, default None
    用于填充缺失值的值。如果数据中没有缺失值,则此参数无效。
  • margins: bool, default False
    是否添加所有行/列的小计和总计。如果为True,则会在透视表的底部和右侧添加额外的行和列,显示聚合后的总计值。
  • dropna: bool, default True
    是否删除包含缺失值的行。如果为True,则任何在index或columns中包含缺失值的行都会被排除在外。
  • margins_name: str, default ‘All’
    边际(小计和总计)的名称。当margins=True时,此参数定义了总计行和列的名称。

(三)代码实现

  • 创建Dataframe表
import pandas as pd  
  
data = {  
    'year': [2020, 2020, 2021, 2021, 2021],  
    'product': ['A', 'B', 'A', 'B', 'C'],  
    'region': ['North', 'North', 'South', 'South', 'East'],  
    'sales': [100, 200, 150, 300, 50]  
}  
df = pd.DataFrame(data)
df

数据样式:
在这里插入图片描述

  • 基本透视表
# 每个商品每年的总的销售数量
pivot_table = df.pivot_table(values='sales', index='year', columns='product', aggfunc='sum')  
pivot_table

运行结果:
在这里插入图片描述

  • 使用多层索引和列
# 每个商品每年在每个地区的销售总量
pivot_table = df.pivot_table(values='sales', index=['year', 'region'], columns='product', aggfunc='sum')  
pivot_table 

运行结果:
在这里插入图片描述
在这个例子中,我们添加了region作为第二层索引。

  • 使用多个聚合函数
# 求每个产品,每年的销售总量和平均销售量
pivot_table = df.pivot_table(values='sales', index='year', columns='product', aggfunc=['sum', 'mean'])  
pivot_table

运行结果:
在这里插入图片描述
这里我们使用了两个聚合函数:sum和mean。这将产生一个多层级的列标签。

  • 填充缺失值
# 将缺失值填充为0
pivot_table = df.pivot_table(values='sales', index='year', columns='product', aggfunc='sum', fill_value=0)  
pivot_table

运行结果:
在这里插入图片描述
如果某些组合在数据中没有出现,则可以使用fill_value参数为这些缺失的组合填充一个默认值。

  • 添加边际
    margins=True会在透视表的底部和右侧添加所有行和列的小计。
pivot_table = df.pivot_table(values='sales', index='year', columns='product', aggfunc='sum', margins=True)  
pivot_table

运行结果:
在这里插入图片描述
通过调整index、columns和aggfunc等参数,你可以创建出各种复杂的数据透视表,以满足不同的数据分析需求。

下篇内容

Pandas的时间转换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587882.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Kubernetes 本地开发环境调试

一、Spring Cloud Kubernetes 本地开发环境调试 上面文章使用 Spring Cloud Kubernetes 在 k8s 环境中实现了服务注册发现、服务动态配置,但是需要放在 k8s 环境中才能正常使用,在本地开发环境中可能没有 k8s 环境,如何本地开发调试呢&#…

1. 深度学习笔记--神经网络中常见的激活函数

1. 介绍 每个激活函数的输入都是一个数字,然后对其进行某种固定的数学操作。激活函数给神经元引入了非线性因素,如果不用激活函数的话,无论神经网络有多少层,输出都是输入的线性组合。激活函数的意义在于它能够引入非线性特性&am…

小程序wx.getlocation接口如何开通?

小程序地理位置接口有什么功能? 随着小程序生态的发展,越来越多的小程序开发者会通过官方提供的自带接口来给用户提供便捷的服务。但是当涉及到地理位置接口时,却经常遇到申请驳回的问题,反复修改也无法通过,给的理由…

计算机网络chapter1——家庭作业

文章目录 复习题1.1节(1) “主机”和“端系统”之间有何不同?列举几种不同类型的端系统。web服务器是一种端系统吗?(2)协议一词常用来用来描述外交关系,维基百科是如何描述外交关系的&#xff1…

十大排序算法之->插入排序

一、插入排序 插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而形成一个新的、记录数增1的有序表。 排序过程: 1、外层循环:从第二个元素开始,依次选取未排序的元素。 2、内层循环:将当前选取的元素…

【UnityRPG游戏制作】Unity_RPG项目_玩家逻辑相关

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:就业…

Typescript精进:前端必备的5大技巧(AI写作)

首先,这篇文章是基于笔尖AI写作进行文章创作的,喜欢的宝子,也可以去体验下,解放双手,上班直接摸鱼~ 按照惯例,先介绍下这款笔尖AI写作,宝子也可以直接下滑跳过看正文~ 笔尖Ai写作:…

通过自然语言处理执行特定任务的AI Agents;大模型控制NPC执行一系列的动作;个人化的电子邮件助手Panza

✨ 1: OpenAgents 通过自然语言处理执行特定任务的AI代理 OpenAgents是一个开放平台,旨在使语言代理(即通过自然语言处理执行特定任务的AI代理)的使用和托管变得更加便捷和实用。它特别适合于日常生活中对数据分析、工具插件获取和网络浏览…

【Mac】Mac安装软件常见问题解决办法

前言 刚开始用Mac系统的小伙伴或者在更新系统版本后运行App的朋友会经常碰到弹窗提示「xxx已损坏,无法打开,您应该将它移到废纸篓」、「打不开xxx,因为Apple无法检查其是否包含恶意软件」、「打不开xxx,因为它来自身份不明的开发…

Pandas入门篇(三)-------数据可视化篇3(seaborn篇)(pandas完结撒花!!!)

目录 概述一、语法二、常用单变量绘图1. 直方图(histplot)2. 核密度预估图(kdeplot)3. 计数柱状图(countplot) 三、常用多变量绘图1.散点图(1) scatterplot(2)regplot 散点图拟合回归线(3)jointplot 散点图…

【Spring 】Spring MVC 入门Ⅱ

Spring MVC 入门Ⅱ 一、接收Cookie / Session 这两者都是用来保存用户信息的,但不同的是: Cookie存在客户端 Session存在服务器 Session产生时会生成一个唯一性的SessionID,这个SessionID可以用于匹配Session和Cookie SessionID可以在Cooki…

【kettle003】kettle访问SQL Server数据库并处理数据至execl文件

一直以来想写下基于kettle的系列文章,作为较火的数据ETL工具,也是日常项目开发中常用的一款工具,最近刚好挤时间梳理、总结下这块儿的知识体系。 熟悉、梳理、总结下Microsoft SQL Server 2022关系数据库相关知识体系 3.欢迎批评指正&#xf…

ChatGPT 记忆功能上线 能记住你和GPT互动的所有内容

你和ChatGPT的互动从今天开始变得更加智能!ChatGPT现在可以记住你的偏好和对话细节,为你提供更加相关的回应。和它聊天,你可以教它记住新的东西,例如:“记住我是素食主义者,当你推荐食谱时。”想了解ChatGP…

吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.1-15.2

目录 第 9 周 15、 异常检测(Anomaly Detection)15.1 问题的动机15.2 高斯分布 第 9 周 15、 异常检测(Anomaly Detection) 15.1 问题的动机 在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题。这是机器学习算法的一个常见应用。这种算法的…

Qwen-Audio:推动通用音频理解的统一大规模音频-语言模型(开源)

随着人工智能技术的不断进步,音频语言模型(Audio-Language Models)在人机交互领域变得越来越重要。然而,由于缺乏能够处理多样化音频类型和任务的预训练模型,该领域的进展受到了限制。为了克服这一挑战,研究…

ClickHouse安装(成功安装)

1.下载安装包 下面通过阿里镜像(https://mirrors.aliyun.com/clickhouse/rpm/lts/)进行下载,下载哪里,自行指定。 # deb包下载使用如下4行 wget https://mirrors.aliyun.com/clickhouse/deb/pool/stable/clickhouse-client_22.8…

图像处理的一些操作(1)

图像处理 1.安装PIL,skimage库1.1导入skimage库中的oi模块和data模块 2.读取图像文件2.1读取图像文件2.2 以灰度模式读取图像2.3 查看示例图像的目录路径2.4 读取chelsea图片2.5 加载示例图片并保存2.6 获得加载图片的信息2.6.1 输出图片类型2.6.2 输出图片尺寸2.6.…

44. UE5 RPG 初始化敌人的属性

在正常的游戏中,我们应该考虑如何去初始化角色属性,并且要给角色分好类型。比如,在我们游戏中,我们如何去初始化小兵的属性,并且还要实现小兵随着等级的增长而增加属性。而且就是小兵也有类型的区分,比如我…

Unity ParticleSystem 入门

概述 在项目的制作过程成,一定少不了粒子系统的使用吧,如果你想在项目粒子效果,那这部分的内容一定不要错过喔!我添加了理解和注释更好理解一点! Common Attribute(粒子通用属性) Duration:粒子持续的时间…

分类规则挖掘(二)

目录 三、决策树分类方法(一)决策树生成框架(二)ID3分类方法(三)决策树的剪枝(四)C4.5算法 三、决策树分类方法 决策树 (Decision Tree) 是从一组无次序、无规则,但有类别…