图像处理的一些操作(1)

图像处理

  • 1.安装PIL,skimage库
    • 1.1导入skimage库中的oi模块和data模块
  • 2.读取图像文件
    • 2.1读取图像文件
    • 2.2 以灰度模式读取图像
    • 2.3 查看示例图像的目录路径
    • 2.4 读取chelsea图片
    • 2.5 加载示例图片并保存
    • 2.6 获得加载图片的信息
      • 2.6.1 输出图片类型
      • 2.6.2 输出图片尺寸
      • 2.6.3 输出图片宽度
      • 2.6.4 输出图片高度
      • 2.6.5 输出图片通道数
      • 2.6.6 输出图片总像素个数
      • 2.6.7 输出图片最大像素值
      • 2.6.8 输出图片最小像素值
      • 2.6.9 输出图片所有像素值平均值
  • 3.使用切片操作提取通道
    • 3.1提取红色通道
    • 3.2提取绿色通道
    • 3.3提取蓝色通道
  • 4.给图片添加椒盐噪声
    • 4.1提升图像维度
    • 4.2 添加随机噪声
    • 4.3显示修改后的图像
  • 5. 给图片去掉椒盐噪声
    • 5.1高斯模糊
    • 5.3 中值滤波
    • 5.2图像切片
    • 5.3特定区域像素值
      • 5.3.1计算特定区域像素值
  • 6.二值化图像
    • 6.1导入color模块
    • 6.2读取图像 转成灰度
    • 6.3遍历循环
  • 7.改变通道值
    • 7.1 [0, 255, 0]
    • 7.2 [6, 25, 60]
    • 7.3 [25, 25, 25]
  • 8. 图像归一化
    • 8.1导入模块
    • 8.2RGB图像转灰度图像
    • 8.3计算灰度图像的最小值和最大值
    • 8.4打印图像
    • 8.5创建两个子图

1.安装PIL,skimage库

1.1导入skimage库中的oi模块和data模块

io模块提供了用于读取和保存图像的函数,而data模块包含了一些实力图像供我们使用

from skimage import io,data

2.读取图像文件

2.1读取图像文件

使用io.Imread函数读取该图片,并加载到名为img的变量中。

img=io.imread(r"C:\Users\song\Desktop\1.jpg")
io.imshow(img)
io.show()

运行结果:
在这里插入图片描述

2.2 以灰度模式读取图像

使用io.Imread函数以灰度模式读取该图片,并加载到名为img的变量中。

img=io.imread(r"C:\Users\song\Desktop\1.jpg",as_gray=True)
io.imshow(img)

运行结果:
在这里插入图片描述

2.3 查看示例图像的目录路径

data_dir 是 skimage 库中的一个变量,它存储了示例图像的目录路径。通常情况下,这个路径指向 skimage 库内部的示例图像文件夹。这个文件夹包含了一些常用的示例图像,供用户在实验和测试时使用。

from skimage import data_dir
print(data_dir)

运行结果:
在这里插入图片描述

2.4 读取chelsea图片

使用了skimage 库中的data 和idata dir 、模块。首先,通过data.chelsea()方法读取了 Lena 图片,然后通过io.imread()方法结合datadir 路径读取了同样的 Lena 图片。这两种方法都用于加载 Lena 图片,只是一种是直接通过 data 模块获取示例图片,另一种是通过拼接路径的方式获取示例图片。

from skimage import data_dir,data,io
img1=data.chelsea() # 读取chelsea图片
img2=io.imread(data_dir+'/chelsea.png') # 读取chelsea图片

2.5 加载示例图片并保存

使用skimage库中的io.save()函数将加载的示例图像img保存到指定路径(imsave()函数会将图像以PNG格式保存到指定路径)
io.show()函数显示先前用io.imshow()加载的图像

from skimage import io,data
img=data.chelsea()
io.imshow(img)
io.show()
io.imsave(r"E:\工坊\chelsea.png",img)

运行结果:
在这里插入图片描述

2.6 获得加载图片的信息

用于获取图片的属性和统计信息

from skimage import io,data
img=data.chelsea()
io.imshow(img)

2.6.1 输出图片类型

输出<class ‘numpy.ndarray’>

print(type(img)) # 显示类型

运行结果:
在这里插入图片描述

2.6.2 输出图片尺寸

示例图像:(高度,宽度,通道数)
彩色图像:3(红、绿、蓝)

print(img.shape) # 显示尺寸

运行结果:
(300,451,3)

2.6.3 输出图片宽度

print(img.shape[0]) # 图片宽度

运行结果:
300

2.6.4 输出图片高度

print(img.shape[1]) # 图片高度

运行结果:
451

2.6.5 输出图片通道数

print(img.shape[2]) # 图片通道数

运行结果:
3

2.6.6 输出图片总像素个数

即宽度乘通道数

print(img.size) # 显示总像素个数

运行结果:
405900

2.6.7 输出图片最大像素值

print(img.max()) # 显示最大像素值

运行结果:
231

2.6.8 输出图片最小像素值

print(img.min()) # 显示最小像素值

运行结果:
0

2.6.9 输出图片所有像素值平均值

print(img.mean()) #显示像素平均值

运行结果:
115.30514166050752

3.使用切片操作提取通道

在numpy数组中,索引[0]表示红色通道,索引[1]表示绿色通道,索引[2]表示蓝色通道

3.1提取红色通道

red_channel = img[:, :, 0]
io.imshow(red_channel)
io.show()

运行结果:
在这里插入图片描述

3.2提取绿色通道

green_channel = img[:, :, 1]
io.imshow(green_channel)
io.show()

运行结果:
在这里插入图片描述

3.3提取蓝色通道

blue_channel = img[:, :, 2]
io.imshow(blue_channel)
io.show()

运行结果:
在这里插入图片描述

4.给图片添加椒盐噪声

4.1提升图像维度

rows代表行数,cols代表列数字,dims代表颜色通道数

rows,cols,dims=img.shape

4.2 添加随机噪声

对加载的图片进行随机位置(x,y)设置为白色的操作。

for i in range(5000): #循环5000次
    x = np.random.randint(0,rows) 
    y = np.random.randint(0,cols)
    img[x,y,:]=255

4.3显示修改后的图像

io.imshow(img)

运行结果:
在这里插入图片描述

5. 给图片去掉椒盐噪声

5.1高斯模糊

import cv2

# 读取图像
image = cv2.imread(r"C:\Users\song\Desktop\2.jpg")

# 高斯模糊
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)

# 显示处理后的图像
cv2.imshow('Blurred Image', blurred_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述

5.3 中值滤波

import cv2

# 读取图像
image = cv2.imread(r"C:\Users\song\Desktop\2.jpg")

# 中值滤波
blurred_image = cv2.medianBlur(image, 5)

# 显示处理后的图像
cv2.imshow("Median Blurred Image", blurred_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述

5.2图像切片

加载图像

from skimage import io, data
img = io.imread(r"C:\Users\song\Desktop\3.jpg")
io.imshow(img)

运行结果:
在这里插入图片描述
显示图像指定区域

from skimage import io,data
img = io.imread(r"C:\Users\song\Desktop\3.jpg")
song = img[300:600,130:350,:]
io.imshow(song)

运行结果:
在这里插入图片描述

5.3特定区域像素值

5.3.1计算特定区域像素值

通过两层循环遍历图像的每个像素位置,计算[:100, :50]内像素值的总和。

height, width = img.shape[0], img.shape[1]
for i in range(height):
    for j in range(width):
        region_sum = img[:100, :50].sum()
        print(region_sum)  

运行结果:
在这里插入图片描述

6.二值化图像

6.1导入color模块

color模块

from skimage import color

6.2读取图像 转成灰度

img_gray=color.rgb2gray(img)
rows,cols=img_gray.shape

6.3遍历循环

for i in range(rows):
for j in range(cols):
        if (img_gray[i,j]<=0.5):
            img_gray[i,j]=0
        else:
            img_gray[i,j]=1
io.imshow(img_gray)

运行结果:
在这里插入图片描述

7.改变通道值

7.1 [0, 255, 0]

找到原始图像中红色通道数大于170的像素,并将这些像素的颜色修改成绿色。

from skimage import color
img = io.imread(r"C:\Users\song\Desktop\1.jpg")
reddish = img[:, :, 0] >170
img[reddish] = [0, 255, 0]
io.imshow(img)

运行结果:
在这里插入图片描述

7.2 [6, 25, 60]

找到原始图像中红色通道数大于170的像素,并将这些像素的颜色修改成深蓝色。
运行结果:
在这里插入图片描述

7.3 [25, 25, 25]

找到原始图像中红色通道数大于170的像素,并将这些像素的颜色修改成灰色。
运行结果:
在这里插入图片描述

8. 图像归一化

8.1导入模块

从skimage库中导入io和color模块,同时从matplotlib.pyplot中导入plt模块

from skimage import io, color
import matplotlib.pyplot as plt

8.2RGB图像转灰度图像

img = io.imread(r"C:\Users\song\Desktop\1.jpg")
gray = color.rgb2gray(img)

8.3计算灰度图像的最小值和最大值

mn = gray.min()
mx = gray.max()
norm = (gray - mn) / (mx - mn)

8.4打印图像

print('归一化前:')
print(gray)
print('归一化后:')
print(norm)

8.5创建两个子图

分别显示归一化前和归一化后的灰度图像
运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

44. UE5 RPG 初始化敌人的属性

在正常的游戏中&#xff0c;我们应该考虑如何去初始化角色属性&#xff0c;并且要给角色分好类型。比如&#xff0c;在我们游戏中&#xff0c;我们如何去初始化小兵的属性&#xff0c;并且还要实现小兵随着等级的增长而增加属性。而且就是小兵也有类型的区分&#xff0c;比如我…

Unity ParticleSystem 入门

概述 在项目的制作过程成&#xff0c;一定少不了粒子系统的使用吧&#xff0c;如果你想在项目粒子效果&#xff0c;那这部分的内容一定不要错过喔&#xff01;我添加了理解和注释更好理解一点&#xff01; Common Attribute(粒子通用属性) Duration&#xff1a;粒子持续的时间…

分类规则挖掘(二)

目录 三、决策树分类方法&#xff08;一&#xff09;决策树生成框架&#xff08;二&#xff09;ID3分类方法&#xff08;三&#xff09;决策树的剪枝&#xff08;四&#xff09;C4.5算法 三、决策树分类方法 决策树 (Decision Tree) 是从一组无次序、无规则&#xff0c;但有类别…

代谢组数据分析七:从质谱样本制备到MaxQuant搜库

前言 LC-MS/MS Liquid Chromatography-Mass Spectrometry&#xff08;LC-MS/MS &#xff0c;液相色谱-质谱串联&#xff09;可用于残留化合物检测、有机小分子检测、鉴定和定量污染物以及在医药和食品领域添加剂检测和生物小分子等检测。 LC-MS/MS一般包含五个步骤&#xff…

Go Web 开发基础【用户登录、注册、验证】

前言 这篇文章主要是学习怎么用 Go 语言&#xff08;Gin&#xff09;开发Web程序&#xff0c;前端太弱了&#xff0c;得好好补补课&#xff0c;完了再来更新。 1、环境准备 新建项目&#xff0c;生成 go.mod 文件&#xff1a; 出现报错&#xff1a;go: modules disabled by G…

GAI工具哪家强?(ChatGPT 4 vs 文心一言)

开始之前&#xff0c; 先来看看 GAI和AI的区别和关系。 AI 和GAI AI 和GAI的概念 AI&#xff08;Artificial Intelligence&#xff09;是人工智能的缩写&#xff0c;是计算机科学的一个分支&#xff0c;旨在使机器像人类一样进行学习和思考。AI技术的研究领域包括机器人、语…

吴恩达2022机器学习专项课程(一)8.2 解决过拟合

目录 解决过拟合&#xff08;一&#xff09;&#xff1a;增加数据解决过拟合&#xff08;二&#xff09;&#xff1a;减少特征特征选择缺点 解决过拟合&#xff08;三&#xff09;&#xff1a;正则化总结 解决过拟合&#xff08;一&#xff09;&#xff1a;增加数据 收集更多训…

翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习四

合集 ChatGPT 通过图形化的方式来理解 Transformer 架构 翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习一翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深度学习二翻译: 什么是ChatGPT 通过图形化的方式来理解 Transformer 架构 深…

UnityWebGL使用sherpa-ncnn实时语音识别

k2-fsa/sherpa-ncnn&#xff1a;在没有互联网连接的情况下使用带有 ncnn 的下一代 Kaldi 进行实时语音识别。支持iOS、Android、Raspberry Pi、VisionFive2、LicheePi4A等。 (github.com) 如果是PC端可以直接使用ssssssilver大佬的 https://github.com/ssssssilver/sherpa-ncn…

unity入门——按钮点击了却无法调用函数

查阅了一番都没有解决问题&#xff0c;最后发现问题是由button的Onclick()事件绑定了代码脚本而不是游戏对象导致的。 如果Onclick()事件绑定的是代码脚本&#xff0c;则下拉框里没有函数&#xff0c;但是点击MonoScript后能手动填入函数名&#xff08;本以为这样就能实现调用…

使用Python的Tkinter库创建你的第一个桌面应用程序

文章目录 准备工作创建窗口和按钮代码解释运行你的应用程序结论 在本教程中&#xff0c;我们将介绍如何使用Python的Tkinter库创建一个简单的桌面应用程序。我们将会创建一个包含一个按钮的窗口&#xff0c;点击按钮时会在窗口上显示一条消息。 准备工作 首先&#xff0c;确保…

【Python】常用数据结构

1、熟悉字典和列表 2、使用条件判断语句 3、list列表中计算 1、从键盘输人一个正整数列表,以-1结束,分别计算列表中奇数和偶数的和。 &#xff08;1&#xff09;源代码&#xff1a; # 初始化奇数和偶数的和为0 odd_sum 0 even_sum 0 #输入 while True:num int(input(&qu…

java+jsp+Oracle+Tomcat 记账管理系统论文(二)

⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️ ➡️点击免费下载全套资料:源码、数据库、部署教程、论文、答辩ppt一条龙服务 ➡️有部署问题可私信联系 ⬆️⬆️⬆️​​​​​​​⬆️…

分布式链路追踪工具Sky walking详解

1&#xff0c;为什么要使用分布式链路追踪工具 随着分布式系统和微服务架构的出现&#xff0c;且伴随着用户量的增加&#xff0c;项目的体量变得十分庞大&#xff0c;一次用户请求会经过多个系统&#xff0c;不同服务之间调用关系十分复杂&#xff0c;一旦一个系统出现错误都可…

微软如何打造数字零售力航母系列科普06 - 如何使用微软的Copilot人工智能

如何使用微软的Copilot人工智能&#xff1f; Copilot和ChatGPT有很多相似之处&#xff0c;但微软的聊天机器人本身就有一定的优势。以下是如何对其进行旋转&#xff0c;并查看其最引人注目的功能。 ​​​​​​​ &#xff08;资料来源&#xff1a;Lance Whitney/微软&…

C++ | 类和对象(中) (构造函数 | 析构函数 | 拷贝构造函数 | 赋值运算符重载 | 取地址 | const取地址)

目录 默认成员函数 构造函数 构造函数是什么 构造函数特征 什么是默认构造函数 注意事项 编译器自动生成的默认构造 缺省值 对象如何传值给构造函数 初始化列表 析构函数 析构函数的特征 编译器默认生成的析构函数 总结 拷贝构造函数 拷贝构造函数的使用场景 拷…

使用ipxe安装现有的装机环境

iPXE和传统PXE区别 iPXE和传统PXE&#xff08;Pre-boot Execution Environment&#xff0c;预启动执行环境&#xff09;的主要区别在于它们的功能和协议支持。以下是两者的主要区别&#xff1a; 协议支持&#xff1a; PXE仅支持TFTP&#xff08;trivial file transfer protoco…

【linuxC语言】空洞文件

文章目录 前言一、空洞文件1.1 空洞文件的介绍1.2 用途 二、示例代码总结 前言 在 Linux 系统编程中&#xff0c;空洞文件是一种特殊类型的文件&#xff0c;它包含了逻辑上的空洞&#xff0c;也就是说文件中的某些部分并没有实际写入数据。尽管文件在逻辑上可能非常大&#xf…

向eclipse中的项目导入jdk、tomcat

前言&#xff1a; 有些项目无法正常启动可能是因为他的基础配置不正确或者没配置&#xff0c;eclipse中的javaweb项目常见的配置就是jdk、tomcat&#xff0c;这三者配置的方式大概相同&#xff0c;以下是相关操作。我的环境是eclipse2018。 一、jdk 在项目上右键选中propert…

java-Spring-mvc-(请求和响应)

目录 &#x1f4cc;HTTP协议 超文本传输协议 请求 Request 响应 Response &#x1f3a8;请求方法 GET请求 POST请求 &#x1f4cc;HTTP协议 超文本传输协议 HTTP协议是浏览器与服务器通讯的应用层协议&#xff0c;规定了浏览器与服务器之间的交互规则以及交互数据的格式…