[openCV]基于赛道追踪的智能车巡线方案V1

import cv2 as cv
import os
import numpy as np

import time


# 遍历文件夹函数
def getFileList(dir, Filelist, ext=None):
    """
    获取文件夹及其子文件夹中文件列表
    输入 dir:文件夹根目录
    输入 ext: 扩展名
    返回: 文件路径列表
    """
    newDir = dir
    if os.path.isfile(dir):
        if ext is None:
            Filelist.append(dir)
        else:
            if ext in dir[-3:]:
                Filelist.append(dir)

    elif os.path.isdir(dir):
        for s in os.listdir(dir):
            newDir = os.path.join(dir, s)
            getFileList(newDir, Filelist, ext)

    return Filelist


def mid(follow, mask, img):
    height = follow.shape[0]  # 输入图像高度
    width = follow.shape[1]  # 输入图像宽度

    half = int(width / 2)  # 输入图像中线

    # 从下往上扫描赛道,最下端取图片中线为分割线
    for y in range(height - 1, -1, -1):

        if y == height - 1:  # 刚开始从底部扫描时
            left = 0
            right = width - 1
            left_scale = 0.5  # 初始赛道追踪范围
            right_scale = 0.5  # 初始赛道追踪范围
        elif left == 0 and right == width - 1:  # 下层没有扫描到赛道时
            left_scale = 0.25  # 赛道追踪范围
            right_scale = 0.25  # 赛道追踪范围
        elif left == 0:  # 仅左下层没有扫描到赛道时
            left_scale = 0.25  # 赛道追踪范围
            right_scale = 0.2  # 赛道追踪范围
        elif right == width - 1:  # 仅右下层没有扫描到赛道时
            left_scale = 0.2  # 赛道追踪范围
            right_scale = 0.25  # 赛道追踪范围
        else:
            left_scale = 0.2  # 赛道追踪范围
            right_scale = 0.2  # 赛道追踪范围

        # 根据下层左线位置和scale,设置左线扫描范围
        left_range = mask[y][max(0, left - int(left_scale * width)):min(left + int(left_scale * width), width - 1)]
        # 根据下层右线位置和scale,设置右线扫描范围
        right_range = mask[y][max(0, right - int(right_scale * width)):min(right + int(right_scale * width), width - 1)]

        # 左侧规定范围内未找到赛道
        if (left_range == np.zeros_like(left_range)).all():
            left = left  # 取图片最左端为左线
        else:
            left = int(
                (max(0, left - int(left_scale * width)) + np.average(
                    np.where(left_range == 255))) * 0.4 + left * 0.6)  # 取左侧规定范围内检测到赛道像素平均位置为左线

        # 右侧规定范围内未找到赛道
        if (right_range == np.zeros_like(right_range)).all():
            right = right  # 取图片最右端为右线
        else:
            right = int(
                (max(0, right - int(right_scale * width)) + np.average(
                    np.where(right_range == 255))) * 0.4 + right * 0.6)  # 取右侧规定范围内检测到赛道像素平均位置为右线

        mid = int((left + right) / 2)  # 计算中点

        # follow[y, mid] = 255  # 画出拟合中线,实际使用时为提高性能可省略
        # img[y, max(0, left - int(left_scale * width)):min(left + int(left_scale * width), width - 1)] = [0, 0, 255]
        # img[y, max(0, right - int(right_scale * width)):min(right + int(right_scale * width), width - 1)] = [0, 0, 255]

        if y == int((360 / 480) * follow.shape[0]):  # 设置指定提取中点的纵轴位置
            mid_output = mid
    cv.circle(follow, (mid_output, int((360 / 480) * follow.shape[0])), 5, 255, -1)  # opencv为(x,y),画出指定提取中点

    error = (half - mid_output) / width * 640  # 计算图片中点与指定提取中点的误差

    return follow, error, img  # error为正数右转,为负数左转


n = -1
# 存放图片的文件夹路径
path = "./d1"
imglist = getFileList(path, [])
for imgpath in imglist:
    n += 1
    if n < 0:
        continue

    start_time = time.time()

    img = cv.imread(imgpath)

    img = cv.resize(img, (640, 480))

    # HSV阈值分割
    img_hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
    mask = cv.inRange(img_hsv, np.array([43, 60, 90]), np.array([62, 255, 255]))

    follow = mask.copy()

    follow, error, img = mid(follow, mask, img)

    print(n, f"error:{error}")
    end_time = time.time()
    print("time:", end_time - start_time, "s")
    cv.imshow("img", img)
    cv.imshow("mask", mask)
    cv.imshow("follow", follow)
    cv.waitKey(0)

cv.destroyAllWindows()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/58570.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ffmpeg.c源码与函数关系分析

介绍 FFmpeg 是一个可以处理音视频的软件&#xff0c;功能非常强大&#xff0c;主要包括&#xff0c;编解码转换&#xff0c;封装格式转换&#xff0c;滤镜特效。FFmpeg支持各种网络协议&#xff0c;支持 RTMP &#xff0c;RTSP&#xff0c;HLS 等高层协议的推拉流&#xff0c…

docker创建镜像并上传云端服务器

docker创建镜像并上传云端服务器 docker容器与镜像的关系1.基本镜像相关文件创建1.1 创建dockerfile文件1.2.创建do.sh文件1.3 创建upload_server_api.py文件1.4 创建upload_server_webui.py文件1.5 文件保存位置 2. 创建镜像操作2.1 创建镜像2.3 创建容器2.2 进入环境容器2.3 …

Jenkins工具系列 —— 启动 Jenkins 服务报错

错误显示 apt-get 安装 Jenkins 后&#xff0c;自动启动 Jenkins 服务报错。 排查原因 直接运行jenkins命令 发现具体报错log&#xff1a;Failed to start Jetty或Failed to bind to 0.0.0.0/0.0.0.0:8080或Address already in use 说明&#xff1a;这里提示的是8080端口号…

LNMP及论坛搭建(第一个访问,单节点)

LNMP&#xff1a;目前成熟的一个企业网站的应用模式之一&#xff0c;指的是一套协同工作的系统和相关软件 能够提供静态页面服务&#xff0c;也可以提供动态web服务&#xff0c;LNMP是缩写 L&#xff1a;指的是Linux操作系统。 N&#xff1a;指的是nginx&#xff0c;nginx提…

【Vue3项目实战】vue3项目基于el-menu封装左侧菜单栏组件

文章目录 概述一、先看效果1.1 静态效果1.2 动态效果 二、核心思路三、全量代码3.1 文件目录结构3.2 /sidebar/index.vue 中3.3 /sidebar/sidebarItem.vue 中3.4 路由表结构 四、代码讲解五、SVG组件六、系列文章友链1、[配置husky、stylelint、commitlint&#xff0c;实现git提…

HadoopWEB页面上传文件报错Couldn‘t upload the file course_info.txt

HadoopWEB页面上传文件报错Couldn’t upload the file course_info.txt 右键F2检查发现&#xff1a;文件上传PUT操作的IP地址是节点IP别名识别不到导致 解决方法&#xff1a;在WEB页面访问浏览器所在机器上面配置hosts映射地址(注意:配置的是浏览器访问的地址不是hadoop节点所在…

使用Golang实现一套流程可配置,适用于广告、推荐系统的业务性框架——组合应用

在《使用Golang实现一套流程可配置&#xff0c;适用于广告、推荐系统的业务性框架——简单应用》中&#xff0c;我们看到了各种组合Handler的组件&#xff0c;如HandlerGroup和Layer。这些组件下面的子模块又是不同组件&#xff0c;比如LayerCenter的子组件是Layer。如果此时我…

网络安全(黑客)自学的误区

一、自学网络安全学习的误区和陷阱 1.不要试图先成为一名程序员&#xff08;以编程为基础的学习&#xff09;再开始学习 我在之前的回答中&#xff0c;我都一再强调不要以编程为基础再开始学习网络安全&#xff0c;一般来说&#xff0c;学习编程不但学习周期长&#xff0c;而…

项目中使用非默认字体

项目场景&#xff1a; 由于开发需要&#xff0c;默认的字体不符合开发需求&#xff0c;有时候我们需要引入某种字体到项目中 解决方案&#xff1a; 首先需要下载或引入字体包 然后创建一个 index.css 文件用于声明引入字体名称 font-face {font-family: "YouSheBiao…

C语言多级指针

#include "stdio.h" #include <stdlib.h>int main() {int a 10;//*p int a int *pint* p &a;int** q &p;//int** q int *(*q) int *(q) a//int**q int*(*q) int*(&a) int*&a aint*** k &q;//分析&#xff1a;首先k是个变量&…

大模型系列|基于大模型复杂数据系统架构(二)

张俊林老师在 2023 WAIC AI 开发者论坛的演讲非常有概括性&#xff0c;这边沿着思路进行一定的整理。&#xff08;文章来源&#xff1a;WAIC 2023 | 张俊林&#xff1a;大语言模型带来的交互方式变革&#xff09; 文章目录 1 PlanningProgramming 模式的系统技术架构2 HuggingG…

【Linux】创建与删除用户

新增用户&#xff1a; adduser 用户名【添加用户】 passwd 用户名【设置用户密码】删除用户&#xff1a; userdel -r 用户名【删除用户】

【多模态】23、RO-ViT | 基于 Transformer 的开发词汇目标检测(CVPR2023)

文章目录 一、背景二、方法2.1 基础内容2.2 Region-aware Image-text Pretraining2.3 Open-vocabulary Detector Finetuning 三、效果3.1 细节3.2 开放词汇目标检测效果3.3 Image-text retrieval3.4 Transfer object detection3.5 消融实验 论文&#xff1a;Region-Aware Pretr…

如何解决电脑无声问题:排除故障的几种常见方法

大家好&#xff0c;今天我们来讨论一下处理电脑没有声音的故障。当你突然发现电脑静音无声时&#xff0c;需要逐步排除可能的问题&#xff0c;但总体而言&#xff0c;声音故障是相对容易解决的。接下来&#xff0c;我们将介绍一些排除电脑无声问题的方法。 第一步&#xff1a;…

使用 FastGPT 构建高质量 AI 知识库

作者&#xff1a;余金隆。FastGPT 项目作者&#xff0c;Sealos 项目前端负责人&#xff0c;前 Shopee 前端开发工程师 FastGPT 项目地址&#xff1a;https://github.com/labring/FastGPT/ 引言 自从去年 12 月 ChatGPT 发布以来&#xff0c;带动了一轮新的交互应用革命。尤其在…

安卓:BottomNavigationBar——底部导航栏控件

目录 一、BottomNavigationBar介绍 二、BottomNavigationBar的常用方法及其常用类 &#xff08;一&#xff09;、常用方法 1. 添加菜单项 2. 移除菜单项 3. 设置选中监听器 4. 设置当前选中项 5. 设置徽章 6. 样式和颜色定制 7. 动画效果 8. 隐藏底部导航栏。 9、设…

windows物理机 上安装centos ,ubuntu,等多个操作系统的要点

一、摘要 一般情况下&#xff0c;我们的笔记本或工作电脑都默认安装windows 分几个区&#xff0c;当下是win7 win8 win 10 win11 等&#xff0c;突然我们有需求需要安装个centos &#xff0c;后面我们应当怎么做&#xff0c;要点是什么&#xff1f;一定要根据网上的贴子一步步来…

【Golang 接口自动化00】为什么要用Golang做自动化?

目录 为什么使用Golang做自动化 最终想实现的效果 怎么做&#xff1f; 写在后面 资料获取方法 为什么使用Golang做自动化 顺应公司的趋势学习了Golang之后&#xff0c;因为没有太多时间和项目来实践&#xff0c;怕止步于此、步Java缺少练习遗忘殆尽的后尘&#xff0c;决定…

【iOS】json数据解析以及简单的网络数据请求

文章目录 前言一、json数据解析二、简单的网络数据请求三、实现访问API得到网络数据总结 前言 近期写完了暑假最后一个任务——天气预报&#xff0c;在里面用到了简单的网络数据请求以及json数据的解析&#xff0c;特此记录博客总结 一、json数据解析 JSON是一种轻量级的数据…

vulnhub靶机Empire_LupinOne

下载地址&#xff1a;https://www.vulnhub.com/entry/empire-lupinone,750/ 主机发现 arp-scan -l nmap --min-rate 10000 -p- 192.168.21.137 nmap -sV -sT -O -p22,80 192.168.21.137 nmap --scriptvuln -p22,80 192.168.21.137 先看一下网页 啥也没有 先看一下nmap扫出来的…