pandas中的apply方法使用

apply 用于对 DataFrame 或 Series 中的数据进行逐行或逐列的操作。它可以接受一个函数(通常是 lambda 函数或自定义函数),并将该函数应用到每一行或每一列上。apply语法:

DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(), **kwargs)
  • func:要应用的函数。可以是lambda函数、自定义函数或内置函数。

  • axis

    默认是0,将函数应用到每一列

    axis = 1表示将函数应用到每一行

  • raw

    默认是False,将每一行或每一列作为 Series 传递给函数。

    raw = True,表示将每一行或每一列作为 NumPy 数组传递给函数。

对每一列应用函数

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

result = df.apply(sum)
print(result)
# A     6     
# B    15     
# dtype: int64

对每一行应用函数

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

result = df.apply(sum, axis=1)
print(result)
# 0    5      
# 1    7      
# 2    9      
# dtype: int64

使用lambda函数

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

# 对每一行计算 A 和 B 的乘积
result = df.apply(lambda row: row['A'] * row['B'], axis=1)
print(result)
# 0     4
# 1    10
# 2    18
# dtype: int64

使用自定义函数

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3],
    'B': [4, 5, 6]
})

# 自定义函数:计算 A 和 B 的平方和
def square_sum(row:pd.Series) -> int:
    return row['A'] ** 2 + row['B'] ** 2

# 对每一行应用自定义函数
result = df.apply(square_sum, axis=1)
print(result)
# 0    17
# 1    29
# 2    45
# dtype: int64

apply 是逐行或逐列操作的,因此在处理大规模数据时可能较慢。在处理大规模数据时,需注意性能问题,尽量使用向量化操作。

力扣上的pandas题:1873. 计算特殊奖金 - 力扣(LeetCode)

编写解决方案,计算每个雇员的奖金。如果一个雇员的 id 是 奇数 并且他的名字不是以 'M' 开头,那么他的奖金是他工资的 100% ,否则奖金为 0

解题思路就是使用apply方法。

import pandas as pd

def calculate_special_bonus(employees: pd.DataFrame) -> pd.DataFrame:
    employees['bonus'] = employees.apply(
        lambda x: x['salary'] if x['employee_id'] % 2 == 1 and not x['name'].startswith('M') else 0,
        axis = 1
    )
    return employees[['employee_id', 'bonus']].sort_values(by='employee_id')
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/963037.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习编译器的演进:从计算图到跨硬件部署的自动化之路

第一章 问题的诞生——深度学习部署的硬件困境 1.1 计算图的理想化抽象 什么是计算图? 想象你正在组装乐高积木。每个积木块代表一个数学运算(如加法、乘法),积木之间的连接代表数据流动。深度学习框架正是用这种"积木拼接…

Agentic Automation:基于Agent的企业认知架构重构与数字化转型跃迁---我的AI经典战例

文章目录 Agent代理Agent组成 我在企业实战AI Agent企业痛点我构建的AI Agent App 项目开源 & 安装包下载 大家好,我是工程师令狐,今天想给大家讲解一下AI智能体,以及企业与AI智能体的结合,文章中我会列举自己在企业中Agent实…

论文阅读:Realistic Noise Synthesis with Diffusion Models

这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟 Abstract 深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成…

Baklib揭示内容中台与人工智能技术的创新协同效应

内容概要 在当今信息爆炸的时代,内容的高效生产与分发已成为各行业竞争的关键。内容中台与人工智能技术的结合,为企业提供了一种新颖的解决方案,使得内容创造的流程更加智能化和高效化。 内容中台作为信息流动的核心,能够集中管…

Spring Boot 中的事件发布与监听:深入理解 ApplicationEventPublisher(附Demo)

目录 前言1. 基本知识2. Demo3. 实战代码 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全&am…

DeepSeek 第二弹:Janus-Pro 文生图模型

最近,DeepSeek 可谓是科技圈的焦点,还火出了圈外,掀起了一场全民创作热潮。大家纷纷借助 DeepSeek R1 挥洒才情,实现诗人、小说家的梦想。然而,就在这场文字狂欢之际,DeepSeek 又悄然推出了一款重磅产品——…

leetcode 2563. 统计公平数对的数目

题目如下 数据范围 显然数组长度最大可以到10的5次方n方的复杂度必然超时,阅读题目实际上就是寻找两个位置不同的数满足不等式即可(实际上i j无所谓是哪个 我们只要把位置小的想成i就行)。 按照上面的思路我们只需要排序数组然后从前往后遍历数组然后利用二分查找…

2024第十五届蓝桥杯网安赛道省赛题目--cc(CyberChef)/crypto

打开链接后是: 通过题目界面可以知道是AES加密,并且告诉我们key是gamelabgamelab,IV是gamelabgamelab,Mode是CBC模式,输入是flag,输出为Hex十六进制4da72144967f1c25e6273950bf29342aae635e2396ae17c80b1b…

【视频+图文详解】HTML基础4-html标签的基本使用

图文教程 html标签的基本使用 无序列表 作用&#xff1a;定义一个没有顺序的列表结构 由两个标签组成&#xff1a;<ul>以及<li>&#xff08;两个标签都属于容器级标签&#xff0c;其中ul只能嵌套li标签&#xff0c;但li标签能嵌套任何标签&#xff0c;甚至ul标…

Python-基于PyQt5,wordcloud,pillow,numpy,os,sys等的智能词云生成器

前言&#xff1a;日常生活中&#xff0c;我们有时后就会遇见这样的情形&#xff1a;我们需要将给定的数据进行可视化处理&#xff0c;同时保证呈现比较良好的量化效果。这时候我们可能就会用到词云图。词云图&#xff08;Word cloud&#xff09;又称文字云&#xff0c;是一种文…

自制虚拟机(C/C++)(二、分析引导扇区,虚拟机读二进制文件img软盘)

先修复上一次的bug&#xff0c;添加新指令&#xff0c;并增加图形界面 #include <graphics.h> #include <conio.h> #include <windows.h> #include <commdlg.h> #include <iostream> #include <fstream> #include <sstream> #inclu…

工作流引擎Camunda

一&#xff0c;什么是Camunda&#xff1f; Camunda是一个开源的工作流引擎和业务流程管理平台&#xff0c;基于Java和Spring框架构建。它支持BPMN 2.0标准&#xff0c;允许用户通过图形界面或编程方式定义复杂的工作流和业务流程。Camunda可以嵌入到任何Java应用程序中&#x…

C++,STL,【目录篇】

文章目录 一、简介二、内容提纲第一部分&#xff1a;STL 概述第二部分&#xff1a;STL 容器第三部分&#xff1a;STL 迭代器第四部分&#xff1a;STL 算法第五部分&#xff1a;STL 函数对象第六部分&#xff1a;STL 高级主题第七部分&#xff1a;STL 实战应用 三、写作风格四、…

【已解决】黑马点评项目Redis版本替换过程的数据迁移

黑马点评项目Redis版本替换过程的数据迁移 【哭哭哭】附近商户中需要用到的GEO功能只在Redis 6.2以上版本生效 如果用的是老版本&#xff0c;美食/KTV的主页能正常返回&#xff0c;但无法显示内容 上次好不容易升到了5.0以上版本&#xff0c;现在又用不了了 Redis 6.2的windo…

文献阅读 250201-The carbon budget of China: 1980–2021

The carbon budget of China: 1980–2021 来自 <https://www.sciencedirect.com/science/article/pii/S2095927323007703> 中国碳预算&#xff1a;1980–2021 年 ## Abstract: Using state-of-the-art datasets and models, this study comprehensively estimated the an…

《OpenCV》——图像透视转换

图像透视转换简介 在 OpenCV 里&#xff0c;图像透视转换属于重要的几何变换&#xff0c;也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点&#xff1a;要在源图像和目标图像上分别找出至少四个对应的点。这些对…

条件变量 实现2生产者2消费者模型

1个生产者在生产的时候&#xff0c;另个生产者不能生产(生产者之间互斥) 条件变量用于线程同步&#xff0c;线程挂起/被唤醒。 条件变量和互斥锁共同保证生产者之间互斥生产者和消费者的同步。 思路&#xff1a; 1 定义、初始化共享资源 a 缓冲区&#xff1a;存储物品…

一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI

一、GenBI AI 代理介绍&#xff08;文末提供下载&#xff09; github地址&#xff1a;https://github.com/Canner/WrenAI 本文信息图片均来源于github作者主页 在 Wren AI&#xff0c;我们的使命是通过生成式商业智能 &#xff08;GenBI&#xff09; 使组织能够无缝访问数据&…

使用C#开发一款通用数据库管理工具

由于经常使用各种数据库&#xff0c;笔者自己动手丰衣足食&#xff0c;使用C#开发了一款通用数据库管理工具&#xff0c;支持Mysql、Oracle、Sqlite、SQL Server等数据库的表、视图、存储过程、函数管理功能&#xff0c;并支持导入导出、数据字典生成、拖拽式跨机器跨库数据一键…

sqli-labs靶场通关

sqli-las通关 mysql数据库5.0以上版本有一个自带的数据库叫做information_schema,该数据库下面有两个表一个是tables和columns。tables这个表的table_name字段下面是所有数据库存在的表名。table_schema字段下是所有表名对应的数据库名。columns这个表的colum_name字段下是所有…