基于FastGPT搭建知识库问答系统

在这里插入图片描述

什么是 FastGPT ?

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!

FastGPT 允许用户构建本地知识库,以提高 AI 的理解能力和应用场景的适应性。该系统的设计旨在让 AI 更好地理解用户需求并提供更准确的回答。

FastGPT 功能演示

本文假设你已经安装了 One APIM3E,如果还没有的话,建议你先阅读👇两篇

文章传送门:

  • 大模型接口管理和分发系统One API
  • 开源文本嵌入模型M3E

安装

在群晖上以 Docker 方式安装。

config.json

由于环境变量不利于配置复杂的内容,新版 FastGPT 采用了 ConfigMap 的形式挂载配置文件 config.json

这个配置文件中包含了系统参数和各个模型配置,使用时务必去掉注释!!!!!!!!!!!!!!

源文件的地址在这里👇:https://doc.fastai.site/docs/development/configuration/


老苏修改后的完整的 config.json 放在了这里👇:
https://raw.githubusercontent.com/wbsu2003/synology/main/FastGPT/config.json

llmModels

之前尝试过私有化部署的 LLM Models,在老苏的小机器上除了 Qwen:0.5b外,其他基本上都跑不动,所以这次尝试是用 Moonshot AI,其可用的模型包括 moonshot-v1-8kmoonshot-v1-32kmoonshot-v1-128k

vectorModels

FastGPT 默认使用了 openaiembedding 向量模型

  "vectorModels": [
    {
      "model": "text-embedding-ada-002", // 模型名(与OneAPI对应)
      "name": "Embedding-2", // 模型展示名
      "avatar": "/imgs/model/openai.svg", // logo
      "charsPointsPrice": 0, // n积分/1k token
      "defaultToken": 700, // 默认文本分割时候的 token
      "maxToken": 3000, // 最大 token
      "weight": 100, // 优先训练权重
      "defaultConfig":{},  // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
      "dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
      "queryConfig": {} // 参训时的额外参数
    }
  ],

老苏改用了 M3E 向量模型进行替换

  "vectorModels": [
    {
      "model": "m3e",
      "name": "M3E",
      "price": 0.1,
      "defaultToken": 500,
      "maxToken": 1800
    }
  ],

docker-compose.yml

下面的内容基于官方的 docker-compose.yml 修改而成,因为包含了中文注释,所以记得用 UTF-8 编码

源文件地址:https://github.com/labring/FastGPT/blob/main/files/deploy/fastgpt/docker-compose.yml

version: '3.3'

services:
  pg:
    image: ankane/pgvector:v0.5.0 # git
    #image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0 # 阿里云
    container_name: fastgpt-pg
    restart: always
    #ports:
    #  - 5432:5432
    volumes:
      - ./pdata:/var/lib/postgresql/data
    environment:
    # 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果
      - POSTGRES_USER=username
      - POSTGRES_PASSWORD=password
      - POSTGRES_DB=postgres

  mongo:
    image: mongo:5.0.18
    #image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18
    container_name: fastgpt-mongo
    restart: always
    #ports:
    #  - 27017:27017
    volumes:
      - ./mdata:/data/db
    environment:
      - MONGO_INITDB_ROOT_USERNAME=myusername
      - MONGO_INITDB_ROOT_PASSWORD=mypassword
    command: mongod --keyFile /data/mongodb.key --replSet rs0
    entrypoint:
      - bash
      - -c
      - |
        openssl rand -base64 128 > /data/mongodb.key
        chmod 400 /data/mongodb.key
        chown 999:999 /data/mongodb.key
        echo 'const isInited = rs.status().ok === 1
        if(!isInited){
          rs.initiate({
              _id: "rs0",
              members: [
                  { _id: 0, host: "mongo:27017" }
              ]
          })
        }' > /data/initReplicaSet.js
        # 启动MongoDB服务
        exec docker-entrypoint.sh "$$@" &

        # 等待MongoDB服务启动
        until mongo -u myusername -p mypassword --authenticationDatabase admin --eval "print('waited for connection')" > /dev/null 2>&1; do
          echo "Waiting for MongoDB to start..."
          sleep 2
        done

        # 执行初始化副本集的脚本
        mongo -u myusername -p mypassword --authenticationDatabase admin /data/initReplicaSet.js

        # 等待docker-entrypoint.sh脚本执行的MongoDB服务进程
        wait $$!
        
  fastgpt:
    image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.7 # git
    #image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.7 # 阿里云
    container_name: fastgpt-web
    restart: always
    depends_on:
      - mongo
      - pg
    ports:
      - 3155:3000
    volumes:
      - ./config.json:/app/data/config.json
      - ./tmp:/app/tmp
    environment:
      # root 密码,用户名为: root。如果需要修改 root 密码,直接修改这个环境变量,并重启即可。
      - DEFAULT_ROOT_PSW=1234
      # AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
      - OPENAI_BASE_URL=http://192.168.0.197:3033/v1
      # AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
      - CHAT_API_KEY=sk-bn6M52bOfdxYB3n2Ee717eA2C66b45318f1c95E4D9553d94
      # 数据库最大连接数
      - DB_MAX_LINK=30
      # 登录凭证密钥
      - TOKEN_KEY=any
      # root的密钥,常用于升级时候的初始化请求
      - ROOT_KEY=root_key
      # 文件阅读加密
      - FILE_TOKEN_KEY=filetoken
      # MongoDB 连接参数. 用户名myusername,密码mypassword。
      - MONGODB_URI=mongodb://myusername:mypassword@mongo:27017/fastgpt?authSource=admin
      # pg 连接参数
      - PG_URL=postgresql://username:password@pg:5432/postgres

docker-compose.yml 可以在这里下载☞,https://raw.githubusercontent.com/wbsu2003/synology/main/FastGPT/docker-compose.yml

然后执行下面的命令

# 新建文件夹 fastgpt 和 子目录
mkdir -p /volume1/docker/fastgpt/{pg,mongo,tmp}

# 进入 fastgpt 目录
cd /volume1/docker/fastgpt

# 将 docker-compose.yml 放入当前目录

# 一键启动
docker-compose up -d

# 如果修改了 config.sys 文件,需要重启 FastGPT
docker-compose down
docker-compose up -d

运行

在浏览器中输入 http://群晖IP:3155 就能看到登录界面

如果你没有更改默认配置,那么用户名便是 root,密码为 1234

在这里插入图片描述

新建知识库

首先需要新建一个知识库

在这里插入图片描述

取个名字

在这里插入图片描述

选择 文本数据集

来源选择 本地文件

将文件拖入

在这里插入图片描述

上传了一个 pdf

在这里插入图片描述

直接用了默认设置

在这里插入图片描述

开始上传

在这里插入图片描述

多了一个数据集

在这里插入图片描述

等状态变成 已就绪 就可以开始建应用了

当然这个过程也很消耗资源,小机器死机了一次,好在最后还是索引成功了

可以测试下搜索

在这里插入图片描述

新建应用

新建一个应用

在这里插入图片描述

模板选择了 知识库+对话引导

进入 简易配置,关联知识库

在这里插入图片描述

也可以进入 高级编排

这里已经可以开始调试了

在这里插入图片描述

再来一条

在这里插入图片描述

没问题的话就可以保存、发布了

开始聊天

进入 聊天

在这里插入图片描述

相关接口的开发问题随便问,这给客服工作省了多大的事啊

在这里插入图片描述

看看 Moonshot AI 赠送的 15块 还剩下多少?

所有的请求,在 One API 的日志中都有记录

FastGPT 是支持纯本地私有化部署的,但老苏考虑了自己小机器的性能,采用了混合部署的方式,其中向量模型采用了本地私有化部署,而 LLM 模型则使用了云服务

流程跑通了,接下来就是优化了,比如 标记预期答案

在这里插入图片描述

当然,你还可以将 FastGPT 通过 OpenAPI 接口,被第三方应用调用,可以是全局 API key(可操作 FastGPT 上的相关服务和资源,无法直接调用应用对话)

也可以是应用 API key(可直接调用应用对话)

在这里插入图片描述

参考文档

labring/FastGPT: FastGPT is a knowledge-based platform built on the LLM, offers out-of-the-box data processing and model invocation capabilities, allows for workflow orchestration through Flow visualization!
地址:https://github.com/labring/FastGPT

FastGPT
地址:https://fastgpt.in/

快速了解 FastGPT | FastGPT
地址:https://doc.fastai.site/docs/intro/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/577631.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C# APS.NET CORE 6.0 WebApi在IIS部署报错

今天尝试着把基于 APS.NET CORE6.0开发的webAPI程序部署到IIS中,当打开网站地址时报错,无法打开,于是查找资料最终进行了解决。 打开 IIS →模块 查看列表中是否存在 AspNetCoreModuleV2,如下: 对应的应用池需要选择“…

node.js egg.js

Egg 是 Node.js 社区广泛使用的框架,简洁且扩展性强,按照固定约定进行开发,低协作成本。 在Egg.js框架中,ctx 是一个非常核心且常用的对象,全称为 Context,它代表了当前 HTTP 请求的上下文。ctx 对象封装了…

施耐德 Unity Pro 编程软件导入导出变量

适用范围 施耐德中高端PLC,使用的编程软件为 UnityPro (最新版更名为 Ecostructure Control Expert) 中端 PLC:Premium,M340高端 PLC:Quantum,M580 导出/导入变量 导出变量可导出【变量和 FB…

JavaScript进阶(十五):JS 垃圾回收机制_vue gc

内存:由可读写单元组成,表示一片可操作空间;管理:人为的去操作一片空间的申请、使用和释放;内存管理:开发者主动申请空间、使用空间、释放空间;管理流程:申请-使用-释放;…

社交巨头与去中心化:解析Facebook在区块链的角色

在数字化时代,社交媒体已经成为人们日常生活中不可或缺的一部分。作为全球最大的社交媒体平台,Facebook 在社交领域的影响力无可置疑。然而,随着区块链技术的崛起,Facebook 也开始探索如何将这一技术应用于其平台,以适…

基于LSTM算法实现交通流量预测(Pytorch版)

算法介绍 LSTM(Long Short-Term Memory)算法是一种特殊设计的循环神经网络(RNN, Recurrent Neural Network),专为有效地处理和建模序列数据中的长期依赖关系而开发。由于传统RNN在处理长序列时容易遇到梯度消失和梯度…

ElasticSearch语句中must,must_not,should 组合关系

前言: 在实际应用中,发现当bool中同时使用must和should 没有达到想要的想过,而是只展示了must中的命中数据,所以打算探究一下bool中 三种逻辑关系的组合。 上述查询语句只展示了must的结果,没有should中的结果&#…

本地Windows主机,使用pycharm通过wsl的ubuntu来创建django项目

Windows主机在pycharm中通过wsl的ubuntu来创建django项目 需求:在windows主机中创建python项目再转接到linux服务器中运行,有点麻烦。【特别是存放日志文件或其他文件路径时需要修改为linux中的路径】 1:我的是windows主机 2:有…

基于java+springboot+vue实现的个人博客系统(文末源码+Lw)200

摘 要 随着国内市场经济这几十年来的蓬勃发展,突然遇到了从国外传入国内的互联网技术,互联网产业从开始的群众不信任,到现在的离不开,中间经历了很多挫折。本次开发的个人博客系统,有管理员,用户&#xf…

神经网络参数初始化

💽参数初始化是神经网络训练过程中的一个重要步骤。在构建神经网络时,我们需要为权重和偏置等参数赋予初始值。对于偏置,通常可以将其初始化为0或者较小的随机数。然而,对于权重w的初始化,我们通常会采用更加复杂的方法…

【论文笔记 | 异步联邦】PORT:How Asynchronous can Federated Learning Be?

1. 论文信息 How Asynchronous can Federated Learning Be?2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS). IEEE, 2022,不属于ccf认定 2. introduction 2.1. 背景: 现有的异步FL文献中设计的启发式方法都只反映设计空…

《2024年绿色发展报告》:算力与电力矛盾愈加突出!

2024年4月22日,第55个世界地球日,超聚变发布《2024年绿色发展报告》,向社会展示超聚变面对宏观形势变化、产业趋势变化,推进绿色发展、科技向绿的探索与实践成果。 2023年,算力产业发生了深刻变化。大模型带来AI算力需…

小程序中如何快速给分类添加商品

​快速在分类下面上传商品,并且能够设置商品顺序,关系到运营效率的高低。下面就具体介绍如何快速在某个分类下面设置商品。 一、在商品管理处,查询某个分类下面的商品。 进入小程序管理员后台->商品管理,点击分类输入框&…

从零开始利用MATLAB进行FPGA设计(五)详解双口RAM

创作于谱仪算法设计过程中的数字能谱生成模块设计。 往期回顾: 从零开始利用MATLAB进行FPGA设计(四)生成优化HDL代码 从零开始利用MATLAB进行FPGA设计(三)将Simulink模型转化为定点数据类型 目录 1.关于双口RAM …

大模型咨询培训老师叶梓:利用知识图谱和Llama-Index增强大模型应用

大模型(LLMs)在自然语言处理领域取得了显著成就,但它们有时会产生不准确或不一致的信息,这种现象被称为“幻觉”。为了提高LLMs的准确性和可靠性,可以借助外部知识源,如知识图谱。那么我们如何通过Llama-In…

Web前端开发之CSS_1

CSS选择器字体属性背景属性文本属性表格属性 1. CSS 1.1 CSS简介 CSS(Cascading Style Sheets)层叠样式表,又叫级联样式表,简称样式表。CSS文件后缀名为 .css 。CSS用于HTML文档中元素样式的定义。使用CSS可以让网页具有美观一致…

算法 || 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 一个数组经过划分后具有二段性的都可以用二分查找 二分查找 704. 二分查找 - 力扣(LeetCode) ​ 暴力解法:直接遍历数组,找到 target 便返回下标&am…

【blog项目】layui与jquery冲突导致鼠标悬停事件失效、如何调用layui.use()作用域里的方法

blog项目前台展示——查询数据库中的文章类型并展示时出现的bug 1 正常演示 2 用jquery查询数据库并添加到页面后 3 相关代码 <script src"/static/jquery-2.1.4.js"></script> <script src"/static/layui/layui.js"></script> …

排序算法-计数排序

一、计数排序 这种排序算法 是利用数组下标来确定元素的正确位置的。 如果数组中有20个随机整数&#xff0c;取值范围为0~10&#xff0c;要求用最快的速度把这20个整数从小到大进行排序。 很大的情况下&#xff0c;它的性能甚至快过那些时间复杂度为O(nlogn&#xff09;的排序。…

使用PyCharm开发工具创建工程

一. 简介 前面文章实现了开发 python程序使用的 开发工具PyCharm&#xff0c;本文来学习使用 PyCharm开发工具创建一个 python工程。 二. 使用PyCharm开发工具创建工程 1. 首先&#xff0c;打开 PyCharm开发工具&#xff0c;打开 "New project" 选项&#xff1a; …