Day 31 贪心算法理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

贪心算法理论基础

​ 贪心算法的本质:选择每一个阶段的局部最优,从而达到系统的整体最优

​ 贪心的套路就是没有套路,最好的策略就是举反例,因为大多数时候并不要求严格证明,只需要得到普遍性结论即可;

​ 贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

​ 做题的时候,只要想清楚局部最优是什么推导出全局最优就够了。

分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。

示例 2:

  • 输入: g = [1,2], s = [1,2,3]
  • 输出: 2
  • 解释:你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出 2.

提示:

  • 1 <= g.length <= 3 * 10^4

  • 0 <= s.length <= 3 * 10^4

  • 1 <= g[i], s[j] <= 2^31 - 1

    大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的;

​ 这种题的思路以局部最优换全局最优,思路就像田忌赛马一样;

​ 思路:排序饼干数组和小孩数组,然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量;

​ 代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());//排序胃口
        sort(s.begin(), s.end());//排序饼干
        int index =  s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干,先喂胃口大的
                result++;
                index--;
            }//无须两个for循环,自减操作即可完成
        }
        return result;
    }
};

​ 如果把遍历胃口放在for循环里,遍历饼干放在循环体里,则需要更改遍历顺序,不然可能出现如下这种极端情况:

​ 这时需要更改遍历逻辑即可:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index =  0;
        for(int i = 0; i < s.size(); i++){
            if(index < g.size() && g[index] <= s[i]){//先喂胃口小的
                index++;
            }
        }
        return index;
    }
};

摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]

  • 输出: 2

    ​ 可以看出,删除的元素来自于单调子区间内的元素,此时就达到局部最优的最短单调区间;整个序列得到最多峰值,则局部最优达到整体最优;如下所示:

​ 整体思路即为判断 pre = nums[i] - nums[i - 1] 与 cur = nums[i + 1] - nums[i]是否为一正一负即记录一个峰值;

​ 考虑特殊情景:

​ 1.存在平坡; 2.两端元素;

​ 处理上下中间平坡:

​ 可见,此处需要考虑pre =0 && cur < 0 时,删除左边的重复元素,记录一个峰值;

​ 然后考虑数组两端:由于判断pre和cur需要三个元素确定,所以需要延长这个数组,即默认pre = 0 ;

​ 针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2);

​ 核心代码实现如下:

	int wiggleMaxLength(vector<int>& nums){
        if(nums.size() <= 1)	return nums.size();
        int prediff = 0;//前一个差值;
		int curdiff = 0;//当前差值
		int res = 1;//默认右边有一个峰值
		for(int i = 0; i < nums.size() - 1; i++){//不处理最后一个元素
        	curdiff = nums[i + 1] - nums[i];
        	if((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0)){
            	res++;
        	}
        	prediff = curdiff;//实时更新
    	}
		return res;
    }

​ 这段代码提交是有误的,因为没有考虑另一种情况;

​ 即单调增的平坡状态:

​ 可以看出,上面的代码在三个地方都记录峰值,但其实结果应为2,因为单调中的平坡不能算峰值(即摆动);

出问题是因为实时更新了 prediff

​ 只需要在这坡度摆动变化的时候,更新prediff即可,这样 prediff在单调区间有平坡的时候就不会发生变化,造成误判;

​ 即:

	int wiggleMaxLength(vector<int>& nums){
        if(nums.size() <= 1)	return nums.size();
        int prediff = 0;//前一个差值;
		int curdiff = 0;//当前差值
		int res = 1;//默认右边有一个峰值
		for(int i = 0; i < nums.size() - 1; i++){//不处理最后一个元素
        	curdiff = nums[i + 1] - nums[i];
        	if((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0)){
            	res++;
                prediff = curdiff;
        	}
        	//prediff = curdiff;//实时更新
    	}
		return res;
    }

最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

​ 很简单的想法是暴力法,两个for循环搞事情,肯定不这么整;

​ 思考局部最优思路:当**连续和为负数**时,舍弃这个连续和,然后从下一个元素重新开始寻找子序列;
在这里插入图片描述

​ [注]:

​ 1.并非见到负数就舍弃,使用res记录count的值即可,这样能保证res一直是最大值,同时res也保证了终止条件,因为本题只要求返回最大和;

​ 2.负数只会让下一次相加后的结果变得更小,所以舍弃所有连续和为负的结果;

​ 代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
	int res = INT32_MIN;//记录最大值
	int count = 0;
	for(int i = 0; i < nums.size(); i++){
        count += nums[i];
        if(count > res)	res = count;
        if(count <= 0)	count = 0;
    }
	return res;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/575112.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

优化大模型的解释性提示以提升文本推理性能:一种无监督数据驱动的方法

介绍一篇大模型前沿论文&#xff0c;《Explanation Selection Using Unlabeled Data for Chain-of-Thought Prompting》。在这篇论文中&#xff0c;作者Xi Ye和Greg Durrett探讨了如何通过优化大语言模型&#xff08;LLMs&#xff09;的解释性提示来提升文本推理任务的性能。他…

CSS 标准流 浮动 Flex布局

目录 1. 标准流2. 浮动2.1 清除浮动 3. Flex 布局3.1 Flex 组成3.2 Flex 布局 - 主轴与侧轴对齐方式3.2.1 主轴对齐方式3.2.2 侧轴对齐方式 3.3 Flex 布局 - 修改主轴方向3.4 Flex 布局 - 弹性伸缩比3.5 Flex 布局 - 弹性盒子换行3.6 Flex 布局 - 行对齐方式 1. 标准流 标准流…

OU和域用户的创建

OU和域用户的创建 导航 文章目录 OU和域用户的创建导航一、创建ou二、创建用户三、验证 一、创建ou 在服务器管理器里面点击右上角的工具,选择Active Directory 用户和计算机右击我们的域,选择新建,选择组织单位,并填入我们的单位名字 二、创建用户 右击我们刚刚新建的组织…

Linux(Centos)服务器探索ffmpeg笔记 (命令行、Nvidia硬件加速、GPU、CPU、CUDA、h264_nvenc、过滤器、加水印)

目录 前言内容简介为什么会有这篇文章 1、服务器上怎么使用ffmpeg1.1 使用编译好的&#xff08;需要root权限&#xff09;1.2 自己怎么编译&#xff08;需要root权限&#xff09; 2 、非Root用户要怎么安装和使用3、ffmpeg命令的一些使用引导和参数介绍3.1 编译参数3.2 查询支持…

解读六西格玛培训:企业为何不能忽视其重要性?

六西格玛培训&#xff0c;听起来可能是一个陌生的名词&#xff0c;但当深入探索其内涵后&#xff0c;会发现它实际上是企业追求卓越的必由之路。 想象一下&#xff0c;你正在驾驶一辆赛车&#xff0c;在赛道上追求极致的速度与精准。然而&#xff0c;每一个微小的失误都可能导致…

window平台C#实现软件升级功能(控制台)

window平台C#实现软件升级功能 之前用window窗体实现过一个升级功能&#xff0c;后来发现多个项目都需要升级功能&#xff0c;现改成可接收参数实现一种通用的exe.改用控制台方式实现这个升级功能&#xff0c;这样不仅实现了接收参数&#xff0c;升级程序体积也比原来的窗体形式…

如何让Ubuntu上的MySQL开发更便捷

前言 作为一款开源的数据库开发与数据库管理协同工具&#xff0c;&#xff08;OceanBase Developer Center&#xff0c;简称ODC&#xff09;&#xff0c;针对MySQL数据源&#xff0c;已提供了涵盖SQL开发、变更风险管控、数据安全合规等多个方面的功能&#xff0c;从而为MySQL…

Java集合框架-Collection-List-vector(遗留类)

目录 一、vector层次结构图二、概述三、底层数据结构四、常用方法五、和ArrayList的对比 一、vector层次结构图 二、概述 Vector类是单列集合List接口的一个实现类。与ArrayList类似&#xff0c;Vector也实现了一个可以动态修改的数组&#xff0c;两者最本质的区别在于——Vec…

# 使用 Hystrix 的线程池,idea 报错显示 HystrixThreadPoo1Properties.Setter 报红。

使用 Hystrix 的线程池&#xff0c;idea 报错显示 HystrixThreadPoo1Properties.Setter 报红。 一、可能的原因&#xff1a; 1、拼写错误&#xff1a; HystrixThreadPoo1Properties.Setter 中的 “Poo1” 可能是拼写错误&#xff0c;应为“Pool”。 2、类或方法不存在&#…

BGP配置和应用案例

策略路由的配置步骤 l 策略路由的配置步骤如下&#xff1a; 创建route-map 通过ACL匹配感兴趣的数据&#xff0c;定义策略动作 在指定接口下通过ip policy 命令应用route-map l 最终实现对通过该接口进入设备的数据进行检查&#xff0c;对匹配的数据执行规定的策略…

Selenium IDE 常见错误笔记

错误1&#xff1a;Failed:Exceeded waiting time for new window to appear 2000ms 这个错误通常出现在第一次运行时&#xff0c;有两个原因&#xff1a; Firefox阻止了弹出式窗口&#xff0c;在浏览器设置里允许这个操作即可。 有些网站设置了反扒机制&#xff0c;脚本运行…

【1569】jsp学生学籍管理系统Myeclipse开发sqlserver数据库web结构jsp编程计算机网页项目

一、源码特点 jsp 学生学籍管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为sqlserver2…

Cmake入门学习指南

Cmake入门学习指南 Cmake 官方教程 cmake 提供了一个很好的教程&#xff0c;里面的内容很简单&#xff0c;并且有简单的习题帮助你理解 cmake。 开始前需要的准备 这里默认你使用 windows 环境的电脑进行学习&#xff0c;如果是 Linux 系统就更简单了&#xff0c;直接各种 a…

企业微信hook接口协议,ipad协议http,发送大视频文件

发送大视频文件 参数名必选类型说明uuid是String每个实例的唯一标识&#xff0c;根据uuid操作具体企业微信send_userid是long要发送的人或群idisRoom是bool是否是群消息 请求示例 {"uuid":"1688853790xxx", //uuid 默认随机生成如果初始化传了id则用初始…

苍穹外卖学习

并不包含全部视频内容&#xff0c;大部分都按照操作文档来手搓代码&#xff0c;资料&#xff0c;代码都上传git。 〇、实际代码 0.1 Result封装 package com.sky.result;import lombok.Data;import java.io.Serializable;/*** 后端统一返回结果* param <T>*/ Data pub…

【iconv】Linux c++ 中文字符串转十六进制 GBK 编码/内码

文章目录 问题描述c 代码CMakeLists.txt参考链接 问题描述 Linux 系统默认使用的是 UTF-8 编码&#xff0c;并且 c 中没有标准库可以直接将中文字符转为 GBK 编码/内码。因此需要借助 iconv 库来实现。 在实现代码之前&#xff0c;可以在一下在线工具网站进行中文字符到各个编…

Docker 的数据管理 端口映射 容器互联 镜像的创建

目录 概念 概念 管理 Docker 容器中数据主要有两种方式&#xff1a;数据卷&#xff08;Data Volumes&#xff09;和数据卷容器&#xff08;DataVolumes Containers&#xff09;。总结&#xff1a;因为容器数据是临时保存的为了安全&#xff0c;就要让数据保持持久化。 1&#…

面试ssss

深拷贝和浅拷贝 深拷贝和浅拷贝是关于对象&#xff08;包括数组&#xff09;复制的两个概念。 浅拷贝在复制对象属性的时候&#xff0c;复制的是指针&#xff08;引用&#xff09;&#xff0c;所以&#xff0c;修改目标对象的属性值会影响到原对象的对应属性值 obj。assign …

互联网大厂ssp面经,数据结构part2

1. 什么是堆和优先队列&#xff1f;它们的特点和应用场景是什么&#xff1f; a. 堆是一种特殊的树形数据结构&#xff0c;具有以下特点&#xff1a;i. 堆是一个完全二叉树&#xff0c;即除了最后一层外&#xff0c;其他层都是满的&#xff0c;并且最后一层的节点都靠左对齐。i…

深入探索MySQL:成本模型解析与查询性能优化

码到三十五 &#xff1a; 个人主页 在数据库管理系统中&#xff0c;查询优化器是一个至关重要的组件&#xff0c;它负责将用户提交的SQL查询转换为高效的执行计划。在MySQL中&#xff0c;查询优化器使用了一个称为“成本模型”的机制来评估不同执行计划的优劣&#xff0c;并选择…