BERT-CRF 微调中文 NER 模型

文章目录

  • 数据集
  • 模型定义
  • 数据集预处理
    • BIO 标签转换
    • 自定义Dataset
    • 拆分训练、测试集
  • 训练
  • 验证、测试
  • 指标计算
  • 推理
  • 其它
    • 相关参数
    • CRF 模块

数据集

  • CLUE-NER数据集:https://github.com/CLUEbenchmark/CLUENER2020/blob/master/pytorch_version/README.md
    在这里插入图片描述

模型定义

import torch
import torch.nn as nn
from pytorch_crf import CRF
from transformers import BertPreTrainedModel, BertModel

class BertCrfForNer(BertPreTrainedModel):
    def __init__(self, config):
        super(BertCrfForNer, self).__init__(config)
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.crf = CRF(num_tags=config.num_labels, batch_first=True)
        self.num_labels = config.num_labels
        self.init_weights()

    def forward(self, input_ids, token_type_ids=None, attention_mask=None,labels=None,input_lens=None):
        outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
        sequence_output = outputs[0]
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
        outputs = (logits,)
        if labels is not None:
            loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
            outputs =(-1*loss,)+outputs
        return outputs # (loss), scores

其中 CRF 模块 pytorch_crf.py 见后文。

数据集预处理

BIO 标签转换

ALLOW_LABEL = ["name", "organization", "address","company","government"]

def generate_bio_tags(tokenizer, text_json, allowed_type = ALLOW_LABEL):
    def tokenize_with_location(tokenizer, input_data):
        encoded_input = tokenizer.encode_plus(input_data, return_offsets_mapping=True)
        return list(zip([tokenizer.decode(i) for i in  encoded_input.input_ids],encoded_input.offset_mapping))

    def get_bio_tag(labels, token_start, token_end):
        if token_start >= token_end:
            return "O"
        for entity_type, entities in labels.items():
            if entity_type in allowed_type:
                for entity_name, positions in entities.items():
                    for position in positions:
                        start, end = position
                        if token_start >= start and token_end <= end+1:
                            if token_start == start:
                                return f"B-{entity_type}"
                            else:
                                return f"I-{entity_type}"
        return "O"
                    
    text = text_json["text"]
    labels = text_json["label"]

    # 使用BERT分词器进行分词
    tokenized_text = tokenize_with_location(tokenizer, text)
    tokens, bio_tags = [], []
    for token, loc in tokenized_text:
        loc_s, loc_e = loc
        bio_tag = get_bio_tag(labels, loc_s, loc_e)
        bio_tags.append(bio_tag)
        tokens.append(token)
    return tokens, bio_tags

# 输入JSON数据
input_json = {"text": "你们是最棒的!#英雄联盟d学sanchez创作的原声王", "label": {"game": {"英雄联盟": [[8, 11]]}}}
generate_bio_tags(tokenizer, input_json)
"""
(['[CLS]',
  '你',
  '们',
  '是',
  '最',
  '棒',
  '的',
  '!',
  '#',
  '英',
  '雄',
  '联',
  '盟',
  'd',
  '学',
  'san',
  '##che',
  '##z',
  '创',
  '作',
  '的',
  '原',
  '声',
  '王',
  '[SEP]'],
 ['O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O',
  'O'])"""

自定义Dataset

from tqdm.notebook import tqdm
import json
import pickle
import os

cached_dataset = 'train.dataset.pkl'
train_file = 'train.json'
if not os.path.exists(cached_dataset):
    
    dataset = []
    with open(train_file, 'r') as file:
        for line in tqdm(file.readlines()):
            data = json.loads(line.strip())
            tokens, bio_tags = generate_bio_tags(tokenizer, data)
            if len(set(bio_tags)) > 1:
                dataset.append({"text": data["text"], "tokens": tokens, "tags": bio_tags})
    with open(cached_dataset, 'wb') as f:
        pickle.dump(dataset, f)
        
else:
    with open(cached_dataset, 'rb') as f:
        dataset = pickle.load(f)

先把原始数据 {“text”: …, “label”: … } 转换成 {“text”: … , “tokens”: …, “tags”: …}

from itertools import product
from torch.utils.data import Dataset, DataLoader

labels = ["O"] + [f"{i}-{j}" for i,j in product(['B','I'], ALLOW_LABEL)]
label2id = {k: v for v, k in enumerate(labels)}
id2label = {v: k for v, k in enumerate(labels)}

class BertDataset(Dataset):
    def __init__(self, dataset, tokenizer, max_len):
        self.len = len(dataset)
        self.data = dataset
        self.tokenizer = tokenizer
        self.max_len = max_len
        
    def __getitem__(self, index):
        # step 1: tokenize (and adapt corresponding labels)
        item = self.data[index]
        
        # step 2: add special tokens (and corresponding labels)
        tokenized_sentence = item["tokens"]
        labels = item["tags"] # add outside label for [CLS] token


        # step 3: truncating/padding
        maxlen = self.max_len

        if (len(tokenized_sentence) > maxlen):
            # truncate
            tokenized_sentence = tokenized_sentence[:maxlen]
            labels = labels[:maxlen]
        else:
            # pad
            tokenized_sentence = tokenized_sentence + ['[PAD]'for _ in range(maxlen - len(tokenized_sentence))]
            labels = labels + ["O" for _ in range(maxlen - len(labels))]

        # step 4: obtain the attention mask
        attn_mask = [1 if tok != '[PAD]' else 0 for tok in tokenized_sentence]
        
        # step 5: convert tokens to input ids
        ids = self.tokenizer.convert_tokens_to_ids(tokenized_sentence)

        label_ids = [label2id[label] for label in labels]
        # the following line is deprecated
        #label_ids = [label if label != 0 else -100 for label in label_ids]
        
        return {
              'ids': torch.tensor(ids, dtype=torch.long),
              'mask': torch.tensor(attn_mask, dtype=torch.long),
              #'token_type_ids': torch.tensor(token_ids, dtype=torch.long),
              'targets': torch.tensor(label_ids, dtype=torch.long)
        } 
    
    def __len__(self):
        return self.len

拆分训练、测试集

import numpy as np
import random
def split_train_test_valid(dataset, train_size=0.9, test_size=0.1):
    dataset = np.array(dataset)
    total_size = len(dataset)
    
    # define the ratios
    train_len = int(total_size * train_size)
    test_len = int(total_size * test_size)

    # split the dataframe
    idx = list(range(total_size))
    random.shuffle(idx)  # 将index列表打乱
    data_train = dataset[idx[:train_len]]
    data_test = dataset[idx[train_len:train_len+test_len]]
    data_valid = dataset[idx[train_len+test_len:]]  # 剩下的就是valid
 
    return data_train, data_test, data_valid


data_train, data_test, data_valid = split_train_test_valid(dataset)
print("FULL Dataset: {}".format(len(dataset)))
print("TRAIN Dataset: {}".format(data_train.shape))
print("TEST Dataset: {}".format(data_test.shape))

training_set = BertDataset(data_train, tokenizer, MAX_LEN)
testing_set = BertDataset(data_test, tokenizer, MAX_LEN)
train_params = {'batch_size': TRAIN_BATCH_SIZE,
                'shuffle': True,
                'num_workers': 0
                }

test_params = {'batch_size': VALID_BATCH_SIZE,
                'shuffle': True,
                'num_workers': 0
                }
training_loader = DataLoader(training_set, **train_params)
testing_loader = DataLoader(testing_set, **test_params)

训练

model = BertCrfForNer.from_pretrained('models/bert-base-chinese',
# model = AutoModelForTokenClassification.from_pretrained('save_model',
                                                   num_labels=len(id2label),
                                                   id2label=id2label,
                                                  label2id=label2id)
if MULTI_GPU:
    model = torch.nn.DataParallel(model, )
model.to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE)
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')

def train(epoch):
    tr_loss, tr_accuracy = 0, 0
    nb_tr_examples, nb_tr_steps = 0, 0
    tr_preds, tr_labels = [], []
    # put model in training mode
    model.train()
    
    for idx, batch in enumerate(training_loader):
        
        ids = batch['ids'].to(device, dtype = torch.long)
        mask = batch['mask'].to(device, dtype = torch.long)
        targets = batch['targets'].to(device, dtype = torch.long)

        outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
#         loss, tr_logits = outputs.loss, outputs.logits
        loss, tr_logits = outputs[0], outputs[1]
        if MULTI_GPU:
            loss = loss.mean()
        tr_loss += loss.item()

        nb_tr_steps += 1
        nb_tr_examples += targets.size(0)
        
        if idx % 100==0:
            loss_step = tr_loss/nb_tr_steps
            print(f"Training loss per 100 training steps: {loss_step}")
           
        # compute training accuracy
        flattened_targets = targets.view(-1) # shape (batch_size * seq_len,)
        num_labels = model.module.num_labels if MULTI_GPU else model.num_labels
        active_logits = tr_logits.view(-1, num_labels) # shape (batch_size * seq_len, num_labels)
        flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size * seq_len,)
        # now, use mask to determine where we should compare predictions with targets (includes [CLS] and [SEP] token predictions)
        active_accuracy = mask.view(-1) == 1 # active accuracy is also of shape (batch_size * seq_len,)
        targets = torch.masked_select(flattened_targets, active_accuracy)
        predictions = torch.masked_select(flattened_predictions, active_accuracy)
        
        tr_preds.extend(predictions)
        tr_labels.extend(targets)
        
        tmp_tr_accuracy = accuracy_score(targets.cpu().numpy(), predictions.cpu().numpy())
        tr_accuracy += tmp_tr_accuracy
    
        # gradient clipping
        torch.nn.utils.clip_grad_norm_(
            parameters=model.parameters(), max_norm=MAX_GRAD_NORM
        )
        
        # backward pass
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    epoch_loss = tr_loss / nb_tr_steps
    tr_accuracy = tr_accuracy / nb_tr_steps
    print(f"Training loss epoch: {epoch_loss}")
    print(f"Training accuracy epoch: {tr_accuracy}")

for epoch in range(EPOCHS):
    print(f"Training epoch: {epoch + 1}")
    train(epoch)
"""
Training epoch: 1
Training loss per 100 training steps: 76.82186126708984
Training loss per 100 training steps: 26.512494955912675
Training loss per 100 training steps: 18.23713019356799
Training loss per 100 training steps: 14.71561597431221
Training loss per 100 training steps: 12.793566083075698
Training loss epoch: 12.138352865534845
Training accuracy epoch: 0.9093487211512798
"""

验证、测试

def valid(model, testing_loader):
    # put model in evaluation mode
    model.eval()
    
    eval_loss, eval_accuracy = 0, 0
    nb_eval_examples, nb_eval_steps = 0, 0
    eval_preds, eval_labels = [], []
    
    with torch.no_grad():
        for idx, batch in enumerate(testing_loader):
            
            ids = batch['ids'].to(device, dtype = torch.long)
            mask = batch['mask'].to(device, dtype = torch.long)
            targets = batch['targets'].to(device, dtype = torch.long)
            
            outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
            loss, eval_logits = outputs[0], outputs[1]
            if MULTI_GPU:
                loss = loss.mean()
            
            eval_loss += loss.item()

            nb_eval_steps += 1
            nb_eval_examples += targets.size(0)
        
            if idx % 100==0:
                loss_step = eval_loss/nb_eval_steps
                print(f"Validation loss per 100 evaluation steps: {loss_step}")
              
            # compute evaluation accuracy
            flattened_targets = targets.view(-1) # shape (batch_size * seq_len,)
            num_labels = model.module.num_labels if MULTI_GPU else model.num_labels
            active_logits = eval_logits.view(-1, num_labels) # shape (batch_size * seq_len, num_labels)
            flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size * seq_len,)
            # now, use mask to determine where we should compare predictions with targets (includes [CLS] and [SEP] token predictions)
            active_accuracy = mask.view(-1) == 1 # active accuracy is also of shape (batch_size * seq_len,)
            targets = torch.masked_select(flattened_targets, active_accuracy)
            predictions = torch.masked_select(flattened_predictions, active_accuracy)
            
            eval_labels.extend(targets)
            eval_preds.extend(predictions)
            
            tmp_eval_accuracy = accuracy_score(targets.cpu().numpy(), predictions.cpu().numpy())
            eval_accuracy += tmp_eval_accuracy
    
    #print(eval_labels)
    #print(eval_preds)

    labels = [id2label[id.item()] for id in eval_labels]
    predictions = [id2label[id.item()] for id in eval_preds]

    #print(labels)
    #print(predictions)
    
    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_steps
    print(f"Validation Loss: {eval_loss}")
    print(f"Validation Accuracy: {eval_accuracy}")

    return labels, predictions

labels, predictions = valid(model, testing_loader)
"""
Validation loss per 100 evaluation steps: 5.371463775634766
Validation Loss: 5.623965330123902
Validation Accuracy: 0.9547014622783095
"""

指标计算

from seqeval.metrics import classification_report

print(classification_report([labels], [predictions]))
"""
              precision    recall  f1-score   support

     address       0.50      0.62      0.55       316
     company       0.65      0.77      0.70       270
  government       0.69      0.85      0.76       208
        name       0.87      0.87      0.87       374
organization       0.76      0.82      0.79       343

   micro avg       0.69      0.79      0.74      1511
   macro avg       0.69      0.79      0.73      1511
weighted avg       0.70      0.79      0.74      1511
"""

推理

from transformers import pipeline

model_to_test = (
    model.module if hasattr(model, "module") else model
)
pipe = pipeline(task="token-classification", model=model_to_test.to("cpu"), tokenizer=tokenizer, aggregation_strategy="simple")

pipe("我的名字是michal johnson,我的手机号是13425456344,我家住在东北松花江上8幢7单元6楼5号房")
"""
[{'entity_group': 'name',
  'score': 0.83746755,
  'word': 'michal johnson',
  'start': 5,
  'end': 19},
 {'entity_group': 'address',
  'score': 0.924768,
  'word': '东 北 松 花 江 上 8 幢 7 单 元 6 楼 5 号 房',
  'start': 42,
  'end': 58}]
"""

其它

相关参数

import torch
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1,3'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

MAX_LEN = 128
TRAIN_BATCH_SIZE = 16
VALID_BATCH_SIZE = 32
EPOCHS = 1
LEARNING_RATE = 1e-05
MAX_GRAD_NORM = 10
MULTI_GPU = False
ALLOW_LABEL = ["name", "organization", "address","company","government"]

CRF 模块

参考:https://github.com/CLUEbenchmark/CLUENER2020/blob/master/pytorch_version/models/crf.py

import torch
import torch.nn as nn
from typing import List, Optional

class CRF(nn.Module):
    """Conditional random field.
    This module implements a conditional random field [LMP01]_. The forward computation
    of this class computes the log likelihood of the given sequence of tags and
    emission score tensor. This class also has `~CRF.decode` method which finds
    the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
    Args:
        num_tags: Number of tags.
        batch_first: Whether the first dimension corresponds to the size of a minibatch.
    Attributes:
        start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
            ``(num_tags,)``.
        end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
            ``(num_tags,)``.
        transitions (`~torch.nn.Parameter`): Transition score tensor of size
            ``(num_tags, num_tags)``.
    .. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
       "Conditional random fields: Probabilistic models for segmenting and
       labeling sequence data". *Proc. 18th International Conf. on Machine
       Learning*. Morgan Kaufmann. pp. 282–289.
    .. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
    """

    def __init__(self, num_tags: int, batch_first: bool = False) -> None:
        if num_tags <= 0:
            raise ValueError(f'invalid number of tags: {num_tags}')
        super().__init__()
        self.num_tags = num_tags
        self.batch_first = batch_first
        self.start_transitions = nn.Parameter(torch.empty(num_tags))
        self.end_transitions = nn.Parameter(torch.empty(num_tags))
        self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))

        self.reset_parameters()

    def reset_parameters(self) -> None:
        """Initialize the transition parameters.
        The parameters will be initialized randomly from a uniform distribution
        between -0.1 and 0.1.
        """
        nn.init.uniform_(self.start_transitions, -0.1, 0.1)
        nn.init.uniform_(self.end_transitions, -0.1, 0.1)
        nn.init.uniform_(self.transitions, -0.1, 0.1)

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}(num_tags={self.num_tags})'

    def forward(self, emissions: torch.Tensor,
                tags: torch.LongTensor,
                mask: Optional[torch.ByteTensor] = None,
                reduction: str = 'mean') -> torch.Tensor:
        """Compute the conditional log likelihood of a sequence of tags given emission scores.
        Args:
            emissions (`~torch.Tensor`): Emission score tensor of size
                ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
                ``(batch_size, seq_length, num_tags)`` otherwise.
            tags (`~torch.LongTensor`): Sequence of tags tensor of size
                ``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
                ``(batch_size, seq_length)`` otherwise.
            mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
                if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
            reduction: Specifies  the reduction to apply to the output:
                ``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
                ``sum``: the output will be summed over batches. ``mean``: the output will be
                averaged over batches. ``token_mean``: the output will be averaged over tokens.
        Returns:
            `~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
            reduction is ``none``, ``()`` otherwise.
        """
        if reduction not in ('none', 'sum', 'mean', 'token_mean'):
            raise ValueError(f'invalid reduction: {reduction}')
        if mask is None:
            mask = torch.ones_like(tags, dtype=torch.uint8, device=tags.device)
        if mask.dtype != torch.uint8:
            mask = mask.byte()
        self._validate(emissions, tags=tags, mask=mask)

        if self.batch_first:
            emissions = emissions.transpose(0, 1)
            tags = tags.transpose(0, 1)
            mask = mask.transpose(0, 1)

        # shape: (batch_size,)
        numerator = self._compute_score(emissions, tags, mask)
        # shape: (batch_size,)
        denominator = self._compute_normalizer(emissions, mask)
        # shape: (batch_size,)
        llh = numerator - denominator

        if reduction == 'none':
            return llh
        if reduction == 'sum':
            return llh.sum()
        if reduction == 'mean':
            return llh.mean()
        return llh.sum() / mask.float().sum()

    def decode(self, emissions: torch.Tensor,
               mask: Optional[torch.ByteTensor] = None,
               nbest: Optional[int] = None,
               pad_tag: Optional[int] = None) -> List[List[List[int]]]:
        """Find the most likely tag sequence using Viterbi algorithm.
        Args:
            emissions (`~torch.Tensor`): Emission score tensor of size
                ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
                ``(batch_size, seq_length, num_tags)`` otherwise.
            mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
                if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
            nbest (`int`): Number of most probable paths for each sequence
            pad_tag (`int`): Tag at padded positions. Often input varies in length and
                the length will be padded to the maximum length in the batch. Tags at
                the padded positions will be assigned with a padding tag, i.e. `pad_tag`
        Returns:
            A PyTorch tensor of the best tag sequence for each batch of shape
            (nbest, batch_size, seq_length)
        """
        if nbest is None:
            nbest = 1
        if mask is None:
            mask = torch.ones(emissions.shape[:2], dtype=torch.uint8,
                              device=emissions.device)
        if mask.dtype != torch.uint8:
            mask = mask.byte()
        self._validate(emissions, mask=mask)

        if self.batch_first:
            emissions = emissions.transpose(0, 1)
            mask = mask.transpose(0, 1)

        if nbest == 1:
            return self._viterbi_decode(emissions, mask, pad_tag).unsqueeze(0)
        return self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag)

    def _validate(self, emissions: torch.Tensor,
                  tags: Optional[torch.LongTensor] = None,
                  mask: Optional[torch.ByteTensor] = None) -> None:
        if emissions.dim() != 3:
            raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
        if emissions.size(2) != self.num_tags:
            raise ValueError(
                f'expected last dimension of emissions is {self.num_tags}, '
                f'got {emissions.size(2)}')

        if tags is not None:
            if emissions.shape[:2] != tags.shape:
                raise ValueError(
                    'the first two dimensions of emissions and tags must match, '
                    f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')

        if mask is not None:
            if emissions.shape[:2] != mask.shape:
                raise ValueError(
                    'the first two dimensions of emissions and mask must match, '
                    f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
            no_empty_seq = not self.batch_first and mask[0].all()
            no_empty_seq_bf = self.batch_first and mask[:, 0].all()
            if not no_empty_seq and not no_empty_seq_bf:
                raise ValueError('mask of the first timestep must all be on')

    def _compute_score(self, emissions: torch.Tensor,
                       tags: torch.LongTensor,
                       mask: torch.ByteTensor) -> torch.Tensor:
        # emissions: (seq_length, batch_size, num_tags)
        # tags: (seq_length, batch_size)
        # mask: (seq_length, batch_size)
        seq_length, batch_size = tags.shape
        mask = mask.float()

        # Start transition score and first emission
        # shape: (batch_size,)
        score = self.start_transitions[tags[0]]
        score += emissions[0, torch.arange(batch_size), tags[0]]

        for i in range(1, seq_length):
            # Transition score to next tag, only added if next timestep is valid (mask == 1)
            # shape: (batch_size,)
            score += self.transitions[tags[i - 1], tags[i]] * mask[i]

            # Emission score for next tag, only added if next timestep is valid (mask == 1)
            # shape: (batch_size,)
            score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]

        # End transition score
        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=0) - 1
        # shape: (batch_size,)
        last_tags = tags[seq_ends, torch.arange(batch_size)]
        # shape: (batch_size,)
        score += self.end_transitions[last_tags]

        return score

    def _compute_normalizer(self, emissions: torch.Tensor,
                            mask: torch.ByteTensor) -> torch.Tensor:
        # emissions: (seq_length, batch_size, num_tags)
        # mask: (seq_length, batch_size)
        seq_length = emissions.size(0)

        # Start transition score and first emission; score has size of
        # (batch_size, num_tags) where for each batch, the j-th column stores
        # the score that the first timestep has tag j
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[0]

        for i in range(1, seq_length):
            # Broadcast score for every possible next tag
            # shape: (batch_size, num_tags, 1)
            broadcast_score = score.unsqueeze(2)

            # Broadcast emission score for every possible current tag
            # shape: (batch_size, 1, num_tags)
            broadcast_emissions = emissions[i].unsqueeze(1)

            # Compute the score tensor of size (batch_size, num_tags, num_tags) where
            # for each sample, entry at row i and column j stores the sum of scores of all
            # possible tag sequences so far that end with transitioning from tag i to tag j
            # and emitting
            # shape: (batch_size, num_tags, num_tags)
            next_score = broadcast_score + self.transitions + broadcast_emissions

            # Sum over all possible current tags, but we're in score space, so a sum
            # becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
            # all possible tag sequences so far, that end in tag i
            # shape: (batch_size, num_tags)
            next_score = torch.logsumexp(next_score, dim=1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # shape: (batch_size, num_tags)
            score = torch.where(mask[i].unsqueeze(1), next_score, score)

        # End transition score
        # shape: (batch_size, num_tags)
        score += self.end_transitions

        # Sum (log-sum-exp) over all possible tags
        # shape: (batch_size,)
        return torch.logsumexp(score, dim=1)

    def _viterbi_decode(self, emissions: torch.FloatTensor,
                        mask: torch.ByteTensor,
                        pad_tag: Optional[int] = None) -> List[List[int]]:
        # emissions: (seq_length, batch_size, num_tags)
        # mask: (seq_length, batch_size)
        # return: (batch_size, seq_length)
        if pad_tag is None:
            pad_tag = 0

        device = emissions.device
        seq_length, batch_size = mask.shape

        # Start transition and first emission
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[0]
        history_idx = torch.zeros((seq_length, batch_size, self.num_tags),
                                  dtype=torch.long, device=device)
        oor_idx = torch.zeros((batch_size, self.num_tags),
                              dtype=torch.long, device=device)
        oor_tag = torch.full((seq_length, batch_size), pad_tag,
                             dtype=torch.long, device=device)

        # - score is a tensor of size (batch_size, num_tags) where for every batch,
        #   value at column j stores the score of the best tag sequence so far that ends
        #   with tag j
        # - history_idx saves where the best tags candidate transitioned from; this is used
        #   when we trace back the best tag sequence
        # - oor_idx saves the best tags candidate transitioned from at the positions
        #   where mask is 0, i.e. out of range (oor)

        # Viterbi algorithm recursive case: we compute the score of the best tag sequence
        # for every possible next tag
        for i in range(1, seq_length):
            # Broadcast viterbi score for every possible next tag
            # shape: (batch_size, num_tags, 1)
            broadcast_score = score.unsqueeze(2)

            # Broadcast emission score for every possible current tag
            # shape: (batch_size, 1, num_tags)
            broadcast_emission = emissions[i].unsqueeze(1)

            # Compute the score tensor of size (batch_size, num_tags, num_tags) where
            # for each sample, entry at row i and column j stores the score of the best
            # tag sequence so far that ends with transitioning from tag i to tag j and emitting
            # shape: (batch_size, num_tags, num_tags)
            next_score = broadcast_score + self.transitions + broadcast_emission

            # Find the maximum score over all possible current tag
            # shape: (batch_size, num_tags)
            next_score, indices = next_score.max(dim=1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # and save the index that produces the next score
            # shape: (batch_size, num_tags)
            score = torch.where(mask[i].unsqueeze(-1), next_score, score)
            indices = torch.where(mask[i].unsqueeze(-1), indices, oor_idx)
            history_idx[i - 1] = indices

        # End transition score
        # shape: (batch_size, num_tags)
        end_score = score + self.end_transitions
        _, end_tag = end_score.max(dim=1)

        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=0) - 1

        # insert the best tag at each sequence end (last position with mask == 1)
        history_idx = history_idx.transpose(1, 0).contiguous()
        history_idx.scatter_(1, seq_ends.view(-1, 1, 1).expand(-1, 1, self.num_tags),
                             end_tag.view(-1, 1, 1).expand(-1, 1, self.num_tags))
        history_idx = history_idx.transpose(1, 0).contiguous()

        # The most probable path for each sequence
        best_tags_arr = torch.zeros((seq_length, batch_size),
                                    dtype=torch.long, device=device)
        best_tags = torch.zeros(batch_size, 1, dtype=torch.long, device=device)
        for idx in range(seq_length - 1, -1, -1):
            best_tags = torch.gather(history_idx[idx], 1, best_tags)
            best_tags_arr[idx] = best_tags.data.view(batch_size)

        return torch.where(mask, best_tags_arr, oor_tag).transpose(0, 1)

    def _viterbi_decode_nbest(self, emissions: torch.FloatTensor,
                              mask: torch.ByteTensor,
                              nbest: int,
                              pad_tag: Optional[int] = None) -> List[List[List[int]]]:
        # emissions: (seq_length, batch_size, num_tags)
        # mask: (seq_length, batch_size)
        # return: (nbest, batch_size, seq_length)
        if pad_tag is None:
            pad_tag = 0

        device = emissions.device
        seq_length, batch_size = mask.shape

        # Start transition and first emission
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[0]
        history_idx = torch.zeros((seq_length, batch_size, self.num_tags, nbest),
                                  dtype=torch.long, device=device)
        oor_idx = torch.zeros((batch_size, self.num_tags, nbest),
                              dtype=torch.long, device=device)
        oor_tag = torch.full((seq_length, batch_size, nbest), pad_tag,
                             dtype=torch.long, device=device)

        # + score is a tensor of size (batch_size, num_tags) where for every batch,
        #   value at column j stores the score of the best tag sequence so far that ends
        #   with tag j
        # + history_idx saves where the best tags candidate transitioned from; this is used
        #   when we trace back the best tag sequence
        # - oor_idx saves the best tags candidate transitioned from at the positions
        #   where mask is 0, i.e. out of range (oor)

        # Viterbi algorithm recursive case: we compute the score of the best tag sequence
        # for every possible next tag
        for i in range(1, seq_length):
            if i == 1:
                broadcast_score = score.unsqueeze(-1)
                broadcast_emission = emissions[i].unsqueeze(1)
                # shape: (batch_size, num_tags, num_tags)
                next_score = broadcast_score + self.transitions + broadcast_emission
            else:
                broadcast_score = score.unsqueeze(-1)
                broadcast_emission = emissions[i].unsqueeze(1).unsqueeze(2)
                # shape: (batch_size, num_tags, nbest, num_tags)
                next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission

            # Find the top `nbest` maximum score over all possible current tag
            # shape: (batch_size, nbest, num_tags)
            next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1)

            if i == 1:
                score = score.unsqueeze(-1).expand(-1, -1, nbest)
                indices = indices * nbest

            # convert to shape: (batch_size, num_tags, nbest)
            next_score = next_score.transpose(2, 1)
            indices = indices.transpose(2, 1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # and save the index that produces the next score
            # shape: (batch_size, num_tags, nbest)
            score = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), next_score, score)
            indices = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), indices, oor_idx)
            history_idx[i - 1] = indices

        # End transition score shape: (batch_size, num_tags, nbest)
        end_score = score + self.end_transitions.unsqueeze(-1)
        _, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1)

        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=0) - 1

        # insert the best tag at each sequence end (last position with mask == 1)
        history_idx = history_idx.transpose(1, 0).contiguous()
        history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest),
                             end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest))
        history_idx = history_idx.transpose(1, 0).contiguous()

        # The most probable path for each sequence
        best_tags_arr = torch.zeros((seq_length, batch_size, nbest),
                                    dtype=torch.long, device=device)
        best_tags = torch.arange(nbest, dtype=torch.long, device=device) \
                         .view(1, -1).expand(batch_size, -1)
        for idx in range(seq_length - 1, -1, -1):
            best_tags = torch.gather(history_idx[idx].view(batch_size, -1), 1, best_tags)
            best_tags_arr[idx] = best_tags.data.view(batch_size, -1) // nbest

        return torch.where(mask.unsqueeze(-1), best_tags_arr, oor_tag).permute(2, 1, 0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/568861.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

李沐60_机器翻译数据集——自学笔记

!pip install d2limport os import torch from d2l import torch as d2l下载和预处理数据集 在这个将英语翻译成法语的机器翻译问题中&#xff0c; 英语是源语言&#xff08;source language&#xff09;&#xff0c; 法语是目标语言&#xff08;target language&#xff09;。…

交互式探索微生物群落与生态功能的关系

微生物群落在生态系统中发挥则重要功能&#xff0c;我们在对微生物群落进行分析时&#xff0c;会将不同分类水平&#xff08;从门到属&#xff09;的微生物类群的相对丰度与测定的某一生态功能进行相关性分析。但由于微生物类群数较多&#xff0c;又有不同的分类水平&#xff0…

DeepFaceLab小白教程:视频换脸过程

合适那些人阅读&#xff1f; 适合从未使用过DeepFaceLab的群体。 如果你想基于DeepFaceLab完成一次视频换脸的操作&#xff0c;可以看本篇。 下载方式 GitHub https://github.com/iperov/DeepFaceLab 我是用motrix下载。 网盘 https://pan.baidu.com/share/init?surlO4…

详解数据结构:队列(含栈与队列扩展)

一、顺序队列 有一种线性序列&#xff0c;特点是先进先出&#xff0c;这种存储结构称为队列。队列也是一种线性表&#xff0c;只不过它是操作受限的线性表&#xff0c;只能再两端操作&#xff1a;一端进、一端出。进的一端称为队尾&#xff0c;出的一端称为队头。队列可以用顺…

【笔记django】创建一个app

创建app 错误 raise ImproperlyConfigured( django.core.exceptions.ImproperlyConfigured: Cannot import rules. Check that dvadmin.rules.apps.RulesConfig.name is correct.原因 刚创建的rules的app被手动移动到了dvadmin目录下 而dvadmin/rules/apps.py的内容还是&…

系统设计 --- E2E Test System

系统设计 --- E2E Test System 什么是E2EE2E Architecture Example 什么是E2E E2E&#xff08;端到端&#xff09;测试是一种软件测试方法&#xff0c;旨在模拟真实的用户场景&#xff0c;测试整个应用程序或系统的端到端功能和交互流程。E2E 测试涵盖了从用户界面到后端系统的…

OpenHarmony实战开发-合理运行后台任务

简介 设备返回主界面、锁屏、应用切换等操作会使应用退至后台。为了降低设备耗电速度、保障用户使用流畅度&#xff0c;系统会对退至后台的应用进行管控&#xff0c;包括进程挂起和进程终止。为了保障后台音乐播放、日历提醒等功能的正常使用&#xff0c;系统提供了受规范约束…

iptables实现docker容器动态端口映射实操

背景 之前在《Docker 动态修改容器端口映射的方法》一文中&#xff0c;说明了如何使用修改配置和加防火墙规则实现动态端口映射。但是没有具体分享加防火墙实现动态端口映射的实际案例。今天就分享一下实际操作案例&#xff0c;供大家参考。 分析 动态端口映射的用途 容器端口…

JavaEE初阶——多线程(六)——线程池

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 小比特 大梦想 此篇文章与大家分享多线程的第六篇文章,关于线程池 如果有不足的或者错误的请您指出! 目录 3.线程池3.1标准库的线程池3.2 标准库自己提供的几个工厂类3.3自己实现一个线程池完成大体框架接下来完…

解决DataGrip连接MySQL8时出现时区错误问题

解决办法&#xff1a;在url后面拼接时区参数 ?serverTimezoneAsia/Shanghai

生成式AI在B端产品的应用分析

AI产品发展到现在&#xff0c;消费端的产品应用还受到比较大的限制&#xff1b;但是在B端&#xff0c;已经有了不错的表现。作者总结了AI产品在B端的几款应用&#xff0c;一起来看看表现如何。 生成式AI在B端产品的应用分析© 由 ZAKER 提供 随着今年生成式AI应用的大范围…

绝地求生:16款战术手套,你最钟爱哪一款?

大家好&#xff0c;我是闲游盒&#xff01; 喜迎PUBG七周年生日同时游戏里又迎来了一款新的战术手套&#xff0c;那么就让我们来回顾一下目前出游戏中的16款战术手套吧&#xff0c;看看你最中意的是哪一款&#xff1f; 1、MAZARIN1K 战术手套 2、SPAJKK 战术手套 3、SWAGGER 战…

机器学习(四)之无监督学习

前言&#xff1a; 前面写了监督学习的几种算法&#xff0c;下面就开始无监督啦&#xff01; 如果文章有错误之处&#xff0c;小伙伴尽情在评论区指出来&#xff08;嘿嘿&#xff09;&#xff0c;看到就会回复的。 1.聚类&#xff08;Clustering&#xff09; 1.1 概述&#xff…

8.4.3 使用3:配置单臂路由实现VLAN间路由

1、实验目的 通过本实验可以掌握&#xff1a; 路由器以太网接口上的子接口配置和调试方法。单臂路由实现 VLAN间路由的配置和调试方法。 2、实验拓扑 实验拓扑如下图所示。 3、实验步骤 &#xff08;1&#xff09;配置交换机S1 S1(config)#vlan 2 S1(config-vlan)#exit S…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第七套

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第七套 (共9套&#xff0c;有答案和解析&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09; 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadidadidida313&#xff0c;加我备注&#x…

LayuiMini使用时候初始化模板修改(下载源码)

忘记加了 下载 地址 &#xff1a; layui-mini: layuimini&#xff0c;后台admin前端模板&#xff0c;基于 layui 编写的最简洁、易用的后台框架模板。只需提供一个接口就直接初始化整个框架&#xff0c;无需复杂操作。 LayuiMini使用时候初始化模板官网给的是&#xff1a; layu…

立即刷新导致请求的response没有来得及加载造成的this request has no response data available

1、前端递归调用后端接口 const startProgress () > {timer.value setInterval(() > {if (progress.value < 100) {time.value--;progress.value Math.ceil(100 / wait_time.value);} else {clearInterval(timer.value);progress.value 0;timer.value null;time.…

电磁兼容(EMC):静电放电(ESD)抗扰度试验深度解读(六)

目录 1. 静电测试干扰方式 2. 案例一 3. 案例二 4. 案例三 5. 案例四 6. 总结 静电放电测试的复杂性决定了这项测试对产品的主要影响方式也是多样的。标准里介绍了几种常见的影响方式&#xff1a; 1. 静电测试干扰方式 在静电放电试验中&#xff0c;测试了受试设备对于…

CDN、边缘计算与云计算:构建现代网络的核心技术

在数字化时代&#xff0c;数据的快速传输和处理是保持竞争力的关键。内容分发网络&#xff08;CDN&#xff09;、边缘计算和云计算共同构成了现代互联网基础架构的核心&#xff0c;使内容快速、安全地到达用户手中。本文将探讨这三种技术的功能、相互关系以及未来的发展趋势。 …

大语言模型微调过程中的 RLHF 和 RLAIF 有什么区别?

目前想要深入挖掘大型语言模型&#xff08;LLM&#xff09;的全部潜力需要模型与我们人类的目标和偏好保持一致。从而出现了两种方法&#xff1a;来自人类反馈的人力强化学习&#xff08;RLHF&#xff09;和来自人工智能反馈的人工智能驱动的强化学习&#xff08;RLAIF&#xf…