文章目录
- 数据集
- 模型定义
- 数据集预处理
- BIO 标签转换
- 自定义Dataset
- 拆分训练、测试集
- 训练
- 验证、测试
- 指标计算
- 推理
- 其它
- 相关参数
- CRF 模块
数据集
- CLUE-NER数据集:https://github.com/CLUEbenchmark/CLUENER2020/blob/master/pytorch_version/README.md
模型定义
import torch
import torch.nn as nn
from pytorch_crf import CRF
from transformers import BertPreTrainedModel, BertModel
class BertCrfForNer(BertPreTrainedModel):
def __init__(self, config):
super(BertCrfForNer, self).__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.crf = CRF(num_tags=config.num_labels, batch_first=True)
self.num_labels = config.num_labels
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None,labels=None,input_lens=None):
outputs =self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,)
if labels is not None:
loss = self.crf(emissions = logits, tags=labels, mask=attention_mask)
outputs =(-1*loss,)+outputs
return outputs # (loss), scores
其中 CRF 模块 pytorch_crf.py
见后文。
数据集预处理
BIO 标签转换
ALLOW_LABEL = ["name", "organization", "address","company","government"]
def generate_bio_tags(tokenizer, text_json, allowed_type = ALLOW_LABEL):
def tokenize_with_location(tokenizer, input_data):
encoded_input = tokenizer.encode_plus(input_data, return_offsets_mapping=True)
return list(zip([tokenizer.decode(i) for i in encoded_input.input_ids],encoded_input.offset_mapping))
def get_bio_tag(labels, token_start, token_end):
if token_start >= token_end:
return "O"
for entity_type, entities in labels.items():
if entity_type in allowed_type:
for entity_name, positions in entities.items():
for position in positions:
start, end = position
if token_start >= start and token_end <= end+1:
if token_start == start:
return f"B-{entity_type}"
else:
return f"I-{entity_type}"
return "O"
text = text_json["text"]
labels = text_json["label"]
# 使用BERT分词器进行分词
tokenized_text = tokenize_with_location(tokenizer, text)
tokens, bio_tags = [], []
for token, loc in tokenized_text:
loc_s, loc_e = loc
bio_tag = get_bio_tag(labels, loc_s, loc_e)
bio_tags.append(bio_tag)
tokens.append(token)
return tokens, bio_tags
# 输入JSON数据
input_json = {"text": "你们是最棒的!#英雄联盟d学sanchez创作的原声王", "label": {"game": {"英雄联盟": [[8, 11]]}}}
generate_bio_tags(tokenizer, input_json)
"""
(['[CLS]',
'你',
'们',
'是',
'最',
'棒',
'的',
'!',
'#',
'英',
'雄',
'联',
'盟',
'd',
'学',
'san',
'##che',
'##z',
'创',
'作',
'的',
'原',
'声',
'王',
'[SEP]'],
['O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O'])"""
自定义Dataset
from tqdm.notebook import tqdm
import json
import pickle
import os
cached_dataset = 'train.dataset.pkl'
train_file = 'train.json'
if not os.path.exists(cached_dataset):
dataset = []
with open(train_file, 'r') as file:
for line in tqdm(file.readlines()):
data = json.loads(line.strip())
tokens, bio_tags = generate_bio_tags(tokenizer, data)
if len(set(bio_tags)) > 1:
dataset.append({"text": data["text"], "tokens": tokens, "tags": bio_tags})
with open(cached_dataset, 'wb') as f:
pickle.dump(dataset, f)
else:
with open(cached_dataset, 'rb') as f:
dataset = pickle.load(f)
先把原始数据 {“text”: …, “label”: … } 转换成 {“text”: … , “tokens”: …, “tags”: …}
from itertools import product
from torch.utils.data import Dataset, DataLoader
labels = ["O"] + [f"{i}-{j}" for i,j in product(['B','I'], ALLOW_LABEL)]
label2id = {k: v for v, k in enumerate(labels)}
id2label = {v: k for v, k in enumerate(labels)}
class BertDataset(Dataset):
def __init__(self, dataset, tokenizer, max_len):
self.len = len(dataset)
self.data = dataset
self.tokenizer = tokenizer
self.max_len = max_len
def __getitem__(self, index):
# step 1: tokenize (and adapt corresponding labels)
item = self.data[index]
# step 2: add special tokens (and corresponding labels)
tokenized_sentence = item["tokens"]
labels = item["tags"] # add outside label for [CLS] token
# step 3: truncating/padding
maxlen = self.max_len
if (len(tokenized_sentence) > maxlen):
# truncate
tokenized_sentence = tokenized_sentence[:maxlen]
labels = labels[:maxlen]
else:
# pad
tokenized_sentence = tokenized_sentence + ['[PAD]'for _ in range(maxlen - len(tokenized_sentence))]
labels = labels + ["O" for _ in range(maxlen - len(labels))]
# step 4: obtain the attention mask
attn_mask = [1 if tok != '[PAD]' else 0 for tok in tokenized_sentence]
# step 5: convert tokens to input ids
ids = self.tokenizer.convert_tokens_to_ids(tokenized_sentence)
label_ids = [label2id[label] for label in labels]
# the following line is deprecated
#label_ids = [label if label != 0 else -100 for label in label_ids]
return {
'ids': torch.tensor(ids, dtype=torch.long),
'mask': torch.tensor(attn_mask, dtype=torch.long),
#'token_type_ids': torch.tensor(token_ids, dtype=torch.long),
'targets': torch.tensor(label_ids, dtype=torch.long)
}
def __len__(self):
return self.len
拆分训练、测试集
import numpy as np
import random
def split_train_test_valid(dataset, train_size=0.9, test_size=0.1):
dataset = np.array(dataset)
total_size = len(dataset)
# define the ratios
train_len = int(total_size * train_size)
test_len = int(total_size * test_size)
# split the dataframe
idx = list(range(total_size))
random.shuffle(idx) # 将index列表打乱
data_train = dataset[idx[:train_len]]
data_test = dataset[idx[train_len:train_len+test_len]]
data_valid = dataset[idx[train_len+test_len:]] # 剩下的就是valid
return data_train, data_test, data_valid
data_train, data_test, data_valid = split_train_test_valid(dataset)
print("FULL Dataset: {}".format(len(dataset)))
print("TRAIN Dataset: {}".format(data_train.shape))
print("TEST Dataset: {}".format(data_test.shape))
training_set = BertDataset(data_train, tokenizer, MAX_LEN)
testing_set = BertDataset(data_test, tokenizer, MAX_LEN)
train_params = {'batch_size': TRAIN_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
test_params = {'batch_size': VALID_BATCH_SIZE,
'shuffle': True,
'num_workers': 0
}
training_loader = DataLoader(training_set, **train_params)
testing_loader = DataLoader(testing_set, **test_params)
训练
model = BertCrfForNer.from_pretrained('models/bert-base-chinese',
# model = AutoModelForTokenClassification.from_pretrained('save_model',
num_labels=len(id2label),
id2label=id2label,
label2id=label2id)
if MULTI_GPU:
model = torch.nn.DataParallel(model, )
model.to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE)
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')
def train(epoch):
tr_loss, tr_accuracy = 0, 0
nb_tr_examples, nb_tr_steps = 0, 0
tr_preds, tr_labels = [], []
# put model in training mode
model.train()
for idx, batch in enumerate(training_loader):
ids = batch['ids'].to(device, dtype = torch.long)
mask = batch['mask'].to(device, dtype = torch.long)
targets = batch['targets'].to(device, dtype = torch.long)
outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
# loss, tr_logits = outputs.loss, outputs.logits
loss, tr_logits = outputs[0], outputs[1]
if MULTI_GPU:
loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
nb_tr_examples += targets.size(0)
if idx % 100==0:
loss_step = tr_loss/nb_tr_steps
print(f"Training loss per 100 training steps: {loss_step}")
# compute training accuracy
flattened_targets = targets.view(-1) # shape (batch_size * seq_len,)
num_labels = model.module.num_labels if MULTI_GPU else model.num_labels
active_logits = tr_logits.view(-1, num_labels) # shape (batch_size * seq_len, num_labels)
flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size * seq_len,)
# now, use mask to determine where we should compare predictions with targets (includes [CLS] and [SEP] token predictions)
active_accuracy = mask.view(-1) == 1 # active accuracy is also of shape (batch_size * seq_len,)
targets = torch.masked_select(flattened_targets, active_accuracy)
predictions = torch.masked_select(flattened_predictions, active_accuracy)
tr_preds.extend(predictions)
tr_labels.extend(targets)
tmp_tr_accuracy = accuracy_score(targets.cpu().numpy(), predictions.cpu().numpy())
tr_accuracy += tmp_tr_accuracy
# gradient clipping
torch.nn.utils.clip_grad_norm_(
parameters=model.parameters(), max_norm=MAX_GRAD_NORM
)
# backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss = tr_loss / nb_tr_steps
tr_accuracy = tr_accuracy / nb_tr_steps
print(f"Training loss epoch: {epoch_loss}")
print(f"Training accuracy epoch: {tr_accuracy}")
for epoch in range(EPOCHS):
print(f"Training epoch: {epoch + 1}")
train(epoch)
"""
Training epoch: 1
Training loss per 100 training steps: 76.82186126708984
Training loss per 100 training steps: 26.512494955912675
Training loss per 100 training steps: 18.23713019356799
Training loss per 100 training steps: 14.71561597431221
Training loss per 100 training steps: 12.793566083075698
Training loss epoch: 12.138352865534845
Training accuracy epoch: 0.9093487211512798
"""
验证、测试
def valid(model, testing_loader):
# put model in evaluation mode
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_examples, nb_eval_steps = 0, 0
eval_preds, eval_labels = [], []
with torch.no_grad():
for idx, batch in enumerate(testing_loader):
ids = batch['ids'].to(device, dtype = torch.long)
mask = batch['mask'].to(device, dtype = torch.long)
targets = batch['targets'].to(device, dtype = torch.long)
outputs = model(input_ids=ids, attention_mask=mask, labels=targets)
loss, eval_logits = outputs[0], outputs[1]
if MULTI_GPU:
loss = loss.mean()
eval_loss += loss.item()
nb_eval_steps += 1
nb_eval_examples += targets.size(0)
if idx % 100==0:
loss_step = eval_loss/nb_eval_steps
print(f"Validation loss per 100 evaluation steps: {loss_step}")
# compute evaluation accuracy
flattened_targets = targets.view(-1) # shape (batch_size * seq_len,)
num_labels = model.module.num_labels if MULTI_GPU else model.num_labels
active_logits = eval_logits.view(-1, num_labels) # shape (batch_size * seq_len, num_labels)
flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size * seq_len,)
# now, use mask to determine where we should compare predictions with targets (includes [CLS] and [SEP] token predictions)
active_accuracy = mask.view(-1) == 1 # active accuracy is also of shape (batch_size * seq_len,)
targets = torch.masked_select(flattened_targets, active_accuracy)
predictions = torch.masked_select(flattened_predictions, active_accuracy)
eval_labels.extend(targets)
eval_preds.extend(predictions)
tmp_eval_accuracy = accuracy_score(targets.cpu().numpy(), predictions.cpu().numpy())
eval_accuracy += tmp_eval_accuracy
#print(eval_labels)
#print(eval_preds)
labels = [id2label[id.item()] for id in eval_labels]
predictions = [id2label[id.item()] for id in eval_preds]
#print(labels)
#print(predictions)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_steps
print(f"Validation Loss: {eval_loss}")
print(f"Validation Accuracy: {eval_accuracy}")
return labels, predictions
labels, predictions = valid(model, testing_loader)
"""
Validation loss per 100 evaluation steps: 5.371463775634766
Validation Loss: 5.623965330123902
Validation Accuracy: 0.9547014622783095
"""
指标计算
from seqeval.metrics import classification_report
print(classification_report([labels], [predictions]))
"""
precision recall f1-score support
address 0.50 0.62 0.55 316
company 0.65 0.77 0.70 270
government 0.69 0.85 0.76 208
name 0.87 0.87 0.87 374
organization 0.76 0.82 0.79 343
micro avg 0.69 0.79 0.74 1511
macro avg 0.69 0.79 0.73 1511
weighted avg 0.70 0.79 0.74 1511
"""
推理
from transformers import pipeline
model_to_test = (
model.module if hasattr(model, "module") else model
)
pipe = pipeline(task="token-classification", model=model_to_test.to("cpu"), tokenizer=tokenizer, aggregation_strategy="simple")
pipe("我的名字是michal johnson,我的手机号是13425456344,我家住在东北松花江上8幢7单元6楼5号房")
"""
[{'entity_group': 'name',
'score': 0.83746755,
'word': 'michal johnson',
'start': 5,
'end': 19},
{'entity_group': 'address',
'score': 0.924768,
'word': '东 北 松 花 江 上 8 幢 7 单 元 6 楼 5 号 房',
'start': 42,
'end': 58}]
"""
其它
相关参数
import torch
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1,3'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_LEN = 128
TRAIN_BATCH_SIZE = 16
VALID_BATCH_SIZE = 32
EPOCHS = 1
LEARNING_RATE = 1e-05
MAX_GRAD_NORM = 10
MULTI_GPU = False
ALLOW_LABEL = ["name", "organization", "address","company","government"]
CRF 模块
参考:https://github.com/CLUEbenchmark/CLUENER2020/blob/master/pytorch_version/models/crf.py
import torch
import torch.nn as nn
from typing import List, Optional
class CRF(nn.Module):
"""Conditional random field.
This module implements a conditional random field [LMP01]_. The forward computation
of this class computes the log likelihood of the given sequence of tags and
emission score tensor. This class also has `~CRF.decode` method which finds
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
Args:
num_tags: Number of tags.
batch_first: Whether the first dimension corresponds to the size of a minibatch.
Attributes:
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
``(num_tags,)``.
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
``(num_tags,)``.
transitions (`~torch.nn.Parameter`): Transition score tensor of size
``(num_tags, num_tags)``.
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
"Conditional random fields: Probabilistic models for segmenting and
labeling sequence data". *Proc. 18th International Conf. on Machine
Learning*. Morgan Kaufmann. pp. 282–289.
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
"""
def __init__(self, num_tags: int, batch_first: bool = False) -> None:
if num_tags <= 0:
raise ValueError(f'invalid number of tags: {num_tags}')
super().__init__()
self.num_tags = num_tags
self.batch_first = batch_first
self.start_transitions = nn.Parameter(torch.empty(num_tags))
self.end_transitions = nn.Parameter(torch.empty(num_tags))
self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
self.reset_parameters()
def reset_parameters(self) -> None:
"""Initialize the transition parameters.
The parameters will be initialized randomly from a uniform distribution
between -0.1 and 0.1.
"""
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
nn.init.uniform_(self.transitions, -0.1, 0.1)
def __repr__(self) -> str:
return f'{self.__class__.__name__}(num_tags={self.num_tags})'
def forward(self, emissions: torch.Tensor,
tags: torch.LongTensor,
mask: Optional[torch.ByteTensor] = None,
reduction: str = 'mean') -> torch.Tensor:
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
tags (`~torch.LongTensor`): Sequence of tags tensor of size
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
reduction: Specifies the reduction to apply to the output:
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
``sum``: the output will be summed over batches. ``mean``: the output will be
averaged over batches. ``token_mean``: the output will be averaged over tokens.
Returns:
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
reduction is ``none``, ``()`` otherwise.
"""
if reduction not in ('none', 'sum', 'mean', 'token_mean'):
raise ValueError(f'invalid reduction: {reduction}')
if mask is None:
mask = torch.ones_like(tags, dtype=torch.uint8, device=tags.device)
if mask.dtype != torch.uint8:
mask = mask.byte()
self._validate(emissions, tags=tags, mask=mask)
if self.batch_first:
emissions = emissions.transpose(0, 1)
tags = tags.transpose(0, 1)
mask = mask.transpose(0, 1)
# shape: (batch_size,)
numerator = self._compute_score(emissions, tags, mask)
# shape: (batch_size,)
denominator = self._compute_normalizer(emissions, mask)
# shape: (batch_size,)
llh = numerator - denominator
if reduction == 'none':
return llh
if reduction == 'sum':
return llh.sum()
if reduction == 'mean':
return llh.mean()
return llh.sum() / mask.float().sum()
def decode(self, emissions: torch.Tensor,
mask: Optional[torch.ByteTensor] = None,
nbest: Optional[int] = None,
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
"""Find the most likely tag sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
nbest (`int`): Number of most probable paths for each sequence
pad_tag (`int`): Tag at padded positions. Often input varies in length and
the length will be padded to the maximum length in the batch. Tags at
the padded positions will be assigned with a padding tag, i.e. `pad_tag`
Returns:
A PyTorch tensor of the best tag sequence for each batch of shape
(nbest, batch_size, seq_length)
"""
if nbest is None:
nbest = 1
if mask is None:
mask = torch.ones(emissions.shape[:2], dtype=torch.uint8,
device=emissions.device)
if mask.dtype != torch.uint8:
mask = mask.byte()
self._validate(emissions, mask=mask)
if self.batch_first:
emissions = emissions.transpose(0, 1)
mask = mask.transpose(0, 1)
if nbest == 1:
return self._viterbi_decode(emissions, mask, pad_tag).unsqueeze(0)
return self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag)
def _validate(self, emissions: torch.Tensor,
tags: Optional[torch.LongTensor] = None,
mask: Optional[torch.ByteTensor] = None) -> None:
if emissions.dim() != 3:
raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
if emissions.size(2) != self.num_tags:
raise ValueError(
f'expected last dimension of emissions is {self.num_tags}, '
f'got {emissions.size(2)}')
if tags is not None:
if emissions.shape[:2] != tags.shape:
raise ValueError(
'the first two dimensions of emissions and tags must match, '
f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')
if mask is not None:
if emissions.shape[:2] != mask.shape:
raise ValueError(
'the first two dimensions of emissions and mask must match, '
f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
no_empty_seq = not self.batch_first and mask[0].all()
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
if not no_empty_seq and not no_empty_seq_bf:
raise ValueError('mask of the first timestep must all be on')
def _compute_score(self, emissions: torch.Tensor,
tags: torch.LongTensor,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# tags: (seq_length, batch_size)
# mask: (seq_length, batch_size)
seq_length, batch_size = tags.shape
mask = mask.float()
# Start transition score and first emission
# shape: (batch_size,)
score = self.start_transitions[tags[0]]
score += emissions[0, torch.arange(batch_size), tags[0]]
for i in range(1, seq_length):
# Transition score to next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
# Emission score for next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
# End transition score
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# shape: (batch_size,)
last_tags = tags[seq_ends, torch.arange(batch_size)]
# shape: (batch_size,)
score += self.end_transitions[last_tags]
return score
def _compute_normalizer(self, emissions: torch.Tensor,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
seq_length = emissions.size(0)
# Start transition score and first emission; score has size of
# (batch_size, num_tags) where for each batch, the j-th column stores
# the score that the first timestep has tag j
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
for i in range(1, seq_length):
# Broadcast score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emissions = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the sum of scores of all
# possible tag sequences so far that end with transitioning from tag i to tag j
# and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emissions
# Sum over all possible current tags, but we're in score space, so a sum
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
# all possible tag sequences so far, that end in tag i
# shape: (batch_size, num_tags)
next_score = torch.logsumexp(next_score, dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
# End transition score
# shape: (batch_size, num_tags)
score += self.end_transitions
# Sum (log-sum-exp) over all possible tags
# shape: (batch_size,)
return torch.logsumexp(score, dim=1)
def _viterbi_decode(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor,
pad_tag: Optional[int] = None) -> List[List[int]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
# return: (batch_size, seq_length)
if pad_tag is None:
pad_tag = 0
device = emissions.device
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history_idx = torch.zeros((seq_length, batch_size, self.num_tags),
dtype=torch.long, device=device)
oor_idx = torch.zeros((batch_size, self.num_tags),
dtype=torch.long, device=device)
oor_tag = torch.full((seq_length, batch_size), pad_tag,
dtype=torch.long, device=device)
# - score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# - history_idx saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# - oor_idx saves the best tags candidate transitioned from at the positions
# where mask is 0, i.e. out of range (oor)
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
# Broadcast viterbi score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emission = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the score of the best
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
# Find the maximum score over all possible current tag
# shape: (batch_size, num_tags)
next_score, indices = next_score.max(dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(-1), next_score, score)
indices = torch.where(mask[i].unsqueeze(-1), indices, oor_idx)
history_idx[i - 1] = indices
# End transition score
# shape: (batch_size, num_tags)
end_score = score + self.end_transitions
_, end_tag = end_score.max(dim=1)
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# insert the best tag at each sequence end (last position with mask == 1)
history_idx = history_idx.transpose(1, 0).contiguous()
history_idx.scatter_(1, seq_ends.view(-1, 1, 1).expand(-1, 1, self.num_tags),
end_tag.view(-1, 1, 1).expand(-1, 1, self.num_tags))
history_idx = history_idx.transpose(1, 0).contiguous()
# The most probable path for each sequence
best_tags_arr = torch.zeros((seq_length, batch_size),
dtype=torch.long, device=device)
best_tags = torch.zeros(batch_size, 1, dtype=torch.long, device=device)
for idx in range(seq_length - 1, -1, -1):
best_tags = torch.gather(history_idx[idx], 1, best_tags)
best_tags_arr[idx] = best_tags.data.view(batch_size)
return torch.where(mask, best_tags_arr, oor_tag).transpose(0, 1)
def _viterbi_decode_nbest(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor,
nbest: int,
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
# return: (nbest, batch_size, seq_length)
if pad_tag is None:
pad_tag = 0
device = emissions.device
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history_idx = torch.zeros((seq_length, batch_size, self.num_tags, nbest),
dtype=torch.long, device=device)
oor_idx = torch.zeros((batch_size, self.num_tags, nbest),
dtype=torch.long, device=device)
oor_tag = torch.full((seq_length, batch_size, nbest), pad_tag,
dtype=torch.long, device=device)
# + score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# + history_idx saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# - oor_idx saves the best tags candidate transitioned from at the positions
# where mask is 0, i.e. out of range (oor)
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
if i == 1:
broadcast_score = score.unsqueeze(-1)
broadcast_emission = emissions[i].unsqueeze(1)
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
else:
broadcast_score = score.unsqueeze(-1)
broadcast_emission = emissions[i].unsqueeze(1).unsqueeze(2)
# shape: (batch_size, num_tags, nbest, num_tags)
next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission
# Find the top `nbest` maximum score over all possible current tag
# shape: (batch_size, nbest, num_tags)
next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1)
if i == 1:
score = score.unsqueeze(-1).expand(-1, -1, nbest)
indices = indices * nbest
# convert to shape: (batch_size, num_tags, nbest)
next_score = next_score.transpose(2, 1)
indices = indices.transpose(2, 1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags, nbest)
score = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), next_score, score)
indices = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), indices, oor_idx)
history_idx[i - 1] = indices
# End transition score shape: (batch_size, num_tags, nbest)
end_score = score + self.end_transitions.unsqueeze(-1)
_, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1)
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# insert the best tag at each sequence end (last position with mask == 1)
history_idx = history_idx.transpose(1, 0).contiguous()
history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest),
end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest))
history_idx = history_idx.transpose(1, 0).contiguous()
# The most probable path for each sequence
best_tags_arr = torch.zeros((seq_length, batch_size, nbest),
dtype=torch.long, device=device)
best_tags = torch.arange(nbest, dtype=torch.long, device=device) \
.view(1, -1).expand(batch_size, -1)
for idx in range(seq_length - 1, -1, -1):
best_tags = torch.gather(history_idx[idx].view(batch_size, -1), 1, best_tags)
best_tags_arr[idx] = best_tags.data.view(batch_size, -1) // nbest
return torch.where(mask.unsqueeze(-1), best_tags_arr, oor_tag).permute(2, 1, 0)