大语言模型微调过程中的 RLHF 和 RLAIF 有什么区别?

        目前想要深入挖掘大型语言模型(LLM)的全部潜力需要模型与我们人类的目标和偏好保持一致。从而出现了两种方法:来自人类反馈的人力强化学习(RLHF)和来自人工智能反馈的人工智能驱动的强化学习(RLAIF)。两者都利用强化学习(RL)中的反馈循环来引导大语言模型接近并实现人类意图,但这两种方法的机制和含义却截然不同。

什么是 RLHF?

        RLHF是一个弥合人工智能模型能力与人类愿望之间差距的过程。核心是反馈循环,过程中模型生成输出,人类评估这些输出,反馈给模型,这个迭代不断持续,是的模型的产出越来越符合人类的期望和价值观。 而来自提供专业领域知识的人类的反馈构成了“偏好模型”的支柱。该模型指导人工智能代理的强化学习过程。反馈可以采取多种形式,包括明确的指示、演示或对代理行为的评估反馈。通过奖励符合人类偏好的输出并惩罚那些偏离人类偏好的输出,人工智能代理逐渐学会相应地调整其行为。

        RLHF 的主要优势之一是它能够利用人类的直觉和专业知识,特别是在难以定义明确奖励信号的复杂领域。 RLHF 加速了学习过程,使 AI 代理能够做出更明智的决策。

        RLHF 允许用户直接影响模型的输出,确保其遵守特定的品牌准则、道德考虑或特定任务的要求。这对于需要高度准确性或敏感性的任务非常重要,例如撰写法律文件或生成医疗建议。人类反馈为模型的决策过程提供了清晰的视野,使其更容易理解和解决潜在的偏见或错误。这对于建立人类对模型的信任并确保负责任地使用它们非常重要。RLHF 在众多应用中取得了成功,比如提高新闻文章的事实准确性,或者是微调客户服务聊天机器人。

        但是收集和注释大量人类(特别是专家)的反馈既昂贵又耗时,这一点阻碍了大语言模型项目的开发。另外人类反馈本质上可能是主观的和有偏见的,可能会扭曲模型的学习过程,并在其输出中引入不必要的偏见。RLHF 严重依赖人力专业知识和资源,而这些知识和资源可能并非所有企业都能轻易获得或负担得起,对于个人、小型企业、初创公司是一个难以跨越的天堑。

什么是 RLAIF?

        虽然 RLHF 擅长利用人类专业知识,但其对人力资源的依赖存在巨大局限性。人工智能反馈强化学习 (RLAIF) 是一种通过利用另一个人工智能模型的功能来自动化反馈循环的方法。这种“偏好模型”充当人类评估者的代理人,根据对人类偏好和价值观的理解为人工智能代理提供指导。RLAIF 与 RLHF 训练方法非常相似,主要区别在于反馈来自人工智能模型而不是人类评估者。

        想象一下您正在训练聊天机器人来回答客户查询的场景。使用 RLHF,您需要人工注释者来评估聊天机器人的响应并提供反馈。然而,RLAIF使您能够训练一个单独的 AI 模型,该模型可以分析客户满意度数据、社交媒体情绪和其他相关信号,以自动评估聊天机器人的性能并提供改进反馈。

        RLAIF消除了人类反馈的瓶颈,使其成为大规模LLM开发和培训的理想选择。 通过依靠数据驱动的见解,RLAIF 可以减轻人为偏见,并带来更加客观和公正的输出。自动化反馈循环显着减少了对人力资源的需求,从而节省了模型开发和部署的成本。人工智能偏好模型可以不断学习和发展,适应人类偏好和价值观随时间的变化。

        RLAIF 的有效性取决于另一个教练模型的质量以及与所需模型行为的一致性。而选择和培训合适的语言模型教练可能是另一项复杂的任务。另外有效训练人工智能偏好模型需要获得高质量的数据和强大的学习算法。并且人类不是特别容易理解教练模型生成的基于人工智能的反馈的内在逻辑,可能会阻碍调试、甚至导致项目失败。

总结

        在 RLHF 和 RLAIF 之间进行选择时,不存在一刀切的解决方案。选择取决于各种因素,例如业务目标、目标受众人口统计、语言要求和预算限制。

        如果主要目标是保持所有内容资产的一致性和质量,RLHF 可能是理想的选择。但是,如果您的目标是多元化的全球市场,并且需要使您的内容适应当地语言和文化,RLAIF 可以提供您所需的灵活性和定制功能。 

        考虑解决方案的可扩展性及其与现有内容管理系统和工作流程的兼容性。 RLHF可能更适合语言要求标准化的大规模内容运营,而RLAIF则在全球整合和多语言支持方面表现出色。

        从初始投资、持续维护和资源分配方面评估每个解决方案的成本效益。虽然 RLHF 可能需要在技术和定制方面进行更高的前期投资,但 RLAIF 的即用即付模式和灵活的定价选项可能更适合预算有限的企业。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/568830.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

rosdep一键修复

External Player - 哔哩哔哩嵌入式外链播放器 rosdep失败原因 通常在执行rosdep init操作时就会报错,问题的核心在于rosdep会访问raw.githubusercontent.com这个网址下的资源,例如https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/sour…

免费开源线上社交交友婚恋系统平台 可打包小程序 支持二开 源码交付!

婚姻是人类社会中最重要的关系之一,它对个人和家庭都有着深远的影响。然而,在现代社会的快节奏生活中,找到真爱变得越来越困难。在这个时候,婚恋产品应运而生,为人们提供了寻找真爱的新途径。 1.拓宽人际交流圈子 现代…

【Camera KMD ISP SubSystem笔记】CRM V4L2驱动模型

1. CRM为主设备 /dev/video0,先创建 v4l2_device 设备,再创建 video_device 设备,最后创建 media_device 设备/dev/media0 v4l2_device的mdev指向media_device,v4l2_device的entity链接到media_device的entities上&#xff08…

P1106 删数问题

本题为洛谷&#xff1a; #include<iostream> #include<string> using namespace std; int main(){string n;int k;cin>>n>>k;while(k--){for(int i0;i<n.length();i){if(n[i]>n[i1]){n.erase(i,1); break;} }for(int i0;i<n.length()-1&&…

SpringBoot学习之Kafka发送消费消息入门实例(三十五)

使用Kafka之前需要先启动fKafka,如何下载安装启动kafka请先参考本篇文章的前两篇: 《SpringBoot学习之Kafka下载安装和启动【Windows版本】(三十四)》 《SpringBoot学习之Kafka下载安装和启动【Mac版本】(三十三)》 一、POM依赖 1、加入kafka依赖 2、我的整个POM代码…

Jammy@Jetson Orin - Tensorflow Keras Get Started: 000 setup for tutorial

JammyJetson Orin - Tensorflow & Keras Get Started: 000 setup for tutorial 1. 源由2. 搭建环境2.1 安装IDE环境2.2 安装numpy2.3 安装keras2.4 安装JAX2.5 安装tensorflow2.6 安装PyTorch2.7 安装nbdiff 3. 测试DEMO3.1 numpy版本兼容问题3.2 karas API - model.compil…

Day 20 Linux的WEB服务——apache

WEB服务简介 目前主流的web服务器软件 Linux&#xff1a;apache &#xff0c; nginx Windows-server&#xff1a;IIS 服务器安装nginx或apache后&#xff0c;叫做web服务器&#xff08;又称WWW服务器&#xff09; web服务器软件属于C/S框架模型 web服务器是一种被动程序只…

单片机学习过程

继电器光耦隔离电压转换步进电机直流电机 arduino是最好用的一种&#xff0c;他提供了完整的设备库文件&#xff0c;任何外部设备只要查找相应的库&#xff0c;就可以很方便的使用 &#xff0c; 但是如果不去学习51 或stm32 或 嵌入式玩玩还可以&#xff0c;如果碰到没有实现的…

文字转粤语语音怎么转?文字转语音

文字转粤语语音怎么转&#xff1f;文字转粤语语音的应用&#xff0c;不仅展现了现代科技的魅力&#xff0c;也为我们提供了更加便捷的交流方式。它们将文字转化为粤语发音&#xff0c;让我们能够更直观地感受粤语的韵味和魅力。同时&#xff0c;这些软件还具备高度的可定制性&a…

【LeetCode】---118.杨辉三角

一、题目解析&#xff1a; 二、知识回顾&#xff1a; 1.二维数组&#xff1a; 2. C语言中的二维数组访问方式和vector二维数组的访问&#xff0c; 不同区别&#xff1a; &#xff08;1&#xff09;表面是一样的&#xff0c;但底层不同&#xff01; &#xff08;2&#xff09;静…

FSRCNN:加速超分辨率卷积神经网络,SRCNN的加速版

paper&#xff1a;https://arxiv.org/pdf/1608.00367 code: https://github.com/yjn870/FSRCNN-pytorch/tree/master 目录 1. 动机 2. 方法 3. 代码对比 4. 实验结果 1. 动机 作者此前提出的SRCNN证明了CNN在图像超分领域的有效性。然而&#xff0c;SRCNN计算效率较低&#…

Linux报错处理:‘abrt-cli status’ timed out

最近登录服务器时出现报错&#xff0c;后来查阅资料发现是因为ssh登录时间很久&#xff0c;登录后出现abrt-cli status timed out 的报错。 1.问题分析 abrt-cli是ABRT(Automated Bug Reporting Tool)的命令行接口&#xff0c;用于在Linux系统中处理和报告程序崩溃。 如果abr…

C语言实现扫雷游戏完整实现(上)

文章目录 前言一、新建好头文件和源文件二、实现游戏菜单选择功能三、定义游戏函数四、初始化棋盘五、 打印棋盘函数六、布置雷函数七、玩家排雷菜单八、标记功能的菜单九、标记功能菜单的实现总结 前言 C语言从新建文件到游戏菜单&#xff0c;游戏函数&#xff0c;初始化棋盘…

ElasticSearch笔记一

随着这个业务的发展&#xff0c;我们的数据量越来越庞大。那么传统的这种mysql的数据库就渐渐的难以满足我们复杂的业务需求了。 所以在微服务架构下一般都会用到一种分布式搜索的技术。那么今天呢我们就会带着大家去学习分布搜索当中最流行的一种ElasticSearch&#xff0c;Ela…

【折半处理 二分查找】1755. 最接近目标值的子序列和

本文涉及知识点 折半处理 二分查找算法合集 LeetCode1755. 最接近目标值的子序列和 给你一个整数数组 nums 和一个目标值 goal 。 你需要从 nums 中选出一个子序列&#xff0c;使子序列元素总和最接近 goal 。也就是说&#xff0c;如果子序列元素和为 sum &#xff0c;你需要…

关于Java的三个小题目(很容易错!)

第一题 char运算后的数据类型 最后输出的是什么类型&#xff1f; 答案&#xff1a;int char与byte的联系和区别 char是无符号型的&#xff0c;能够表示一个整数&#xff0c;不能表示负数&#xff08;0~65535&#xff09;&#xff1b;而byte是有符号型的&#xff0c;能够表示…

elasticsearch-8.1.0安装记录

目录 零、版本说明一、安装二、使用客户端访问 零、版本说明 centos [rootnode1 ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)elasticsearch elasticsearch-8.1.0-linux-x86_64一、安装 systemctl stop firewalld.servicesystemctl disable firewal…

笔记本电脑耗电和发热比较厉害怎么处理

工作中会遇到有同事反馈笔记本电脑耗电和发热比较厉害&#xff0c;主要检查以下几个地方 1、CPU频率 很多人觉得是cpu使用率高就代表电脑跑得快&#xff0c;发热量就大&#xff0c;其实不是的&#xff0c;主要是看的cpu频率&#xff0c;频率越高&#xff0c;电脑发热量越大。如…

Laravel 6 - 第十一章 中间件

​ 文章目录 Laravel 6 - 第一章 简介 Laravel 6 - 第二章 项目搭建 Laravel 6 - 第三章 文件夹结构 Laravel 6 - 第四章 生命周期 Laravel 6 - 第五章 控制反转和依赖注入 Laravel 6 - 第六章 服务容器 Laravel 6 - 第七章 服务提供者 Laravel 6 - 第八章 门面 Laravel 6 - …

如何在 Flutter 中制作多种颜色的 TextField

TextField widget 本身并不施加任何样式。相反&#xff0c;它会要求 TextEditingController 生成一个样式化的 TextSpan 对象&#xff0c;即一段带有样式的文本。 TextField 将其样式传递给 TextEditingController &#xff0c;默认实现只是将其放入 TextSpan 对象中&#xff0…