机器学习-10-神经网络python实现-从零开始

文章目录

    • 总结
    • 参考
    • 本门课程的目标
    • 机器学习定义
    • 从零构建神经网络
      • 手写数据集MNIST介绍
      • 代码读取数据集MNIST
      • 神经网络实现
      • 测试手写的图片
    • 带有反向查询的神经网络实现

总结

本系列是机器学习课程的系列课程,主要介绍基于python实现神经网络。

参考

BP神经网络及python实现(详细)

本文来源原文链接:https://blog.csdn.net/weixin_66845445/article/details/133828686

用Python从0到1实现一个神经网络(附代码)!

python神经网络编程代码https://gitee.com/iamyoyo/makeyourownneuralnetwork.git

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合
+算法评估+持续调优+工程化接口实现

机器学习定义

关于机器学习的定义,Tom Michael Mitchell的这段话被广泛引用:
对于某类任务T性能度量P,如果一个计算机程序在T上其性能P随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习
在这里插入图片描述

从零构建神经网络

手写数据集MNIST介绍

mnist_dataset

MNIST数据集是一个包含大量手写数字的集合。 在图像处理领域中,它是一个非常受欢迎的数据集。 经常被用于评估机器学习算法的性能。 MNIST是改进的标准与技术研究所数据库的简称。 MNIST 包含了一个由 70,000 个 28 x 28 的手写数字图像组成的集合,涵盖了从0到9的数字。

本文通过神经网络基于MNIST数据集进行手写识别。

代码读取数据集MNIST

导入库

import numpy
import matplotlib.pyplot

读取mnist_train_100.csv

# open the CSV file and read its contents into a list
data_file = open("mnist_dataset/mnist_train_100.csv", 'r')
data_list = data_file.readlines()
data_file.close()

查看数据集的长度

# check the number of data records (examples)
len(data_list)
# 输出为 100

查看一条数据,这个数据是手写数字的像素值

# show a dataset record
# the first number is the label, the rest are pixel colour values (greyscale 0-255)
data_list[1]

输出为:
在这里插入图片描述
需要注意的是,这个字符串的第一个字为真实label,比如

data_list[50]

输出为:
在这里插入图片描述

这个输出看不懂,因为这是一个很长的字符串,我们对其进行按照逗号进行分割,然后输出为28*28的,就能看出来了

# take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
num=0
for i in all_values[1:]:
    num = num +1
    print("%-3s"%(i),end=' ')
    if num==28:
        num = 0
        print('',end='\n')

输出为:
在这里插入图片描述

通过用图片的方式查看

# take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

这个像素值为0-255,对其进行归一化操作

# scale input to range 0.01 to 1.00
scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# print(scaled_input)
scaled_input

输出为:
在这里插入图片描述

构建一个包含十个输出的标签

#output nodes is 10 (example)
onodes = 10
targets = numpy.zeros(onodes) + 0.01
targets[int(all_values[0])] = 0.99
# print(targets)
targets

输出为:
在这里插入图片描述

神经网络实现

导入库

import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

神经网络实现

# neural network class definition
# 神经网络类定义
class neuralNetwork:
    
    
    # initialise the neural network
    # 初始化神经网络
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        # set number of nodes in each input, hidden, output layer
        # 设置每个输入、隐藏、输出层的节点数
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        
        # link weight matrices, wih and who
        # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
        # w11 w21
        # w12 w22 etc 
        # 链接权重矩阵,wih和who
        # 数组内的权重w_i_j,链接从节点i到下一层的节点j
        # w11 w21
        # w12 w22 等等
        self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
        self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))

        # learning rate 学习率
        self.lr = learningrate
        
        # activation function is the sigmoid function
        # 激活函数是sigmoid函数
        self.activation_function = lambda x: scipy.special.expit(x)
        
        pass

    
    # train the neural network
    # 训练神经网络
    def train(self, inputs_list, targets_list):
        # convert inputs list to 2d array
        # 将输入列表转换为2d数组
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        
        # calculate signals into hidden layer
        # 计算输入到隐藏层的信号
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        # 计算从隐藏层输出的信号
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        # 计算最终输出层的信号
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        # 计算从最终输出层输出的信号
        final_outputs = self.activation_function(final_inputs)
        
        # output layer error is the (target - actual)
        # 输出层误差是(目标 - 实际)
        output_errors = targets - final_outputs
        # hidden layer error is the output_errors, split by weights, recombined at hidden nodes
        # 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合
        hidden_errors = numpy.dot(self.who.T, output_errors) 
        
        # update the weights for the links between the hidden and output layers
        # 更新隐藏层和输出层之间的权重
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
        
        # update the weights for the links between the input and hidden layers
        # 更新输入层和隐藏层之间的权重
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
        
        pass

    
    # query the neural network
    # 查询神经网络
    def query(self, inputs_list):
        # convert inputs list to 2d array
        # 将输入列表转换为2d数组
        inputs = numpy.array(inputs_list, ndmin=2).T
        
        # calculate signals into hidden layer
        # 计算输入到隐藏层的信号
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        # 计算从隐藏层输出的信号
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        # 计算最终输出层的信号
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        # 计算从最终输出层输出的信号
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs

定义参数,并初始化神经网络

# number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 200
output_nodes = 10

# learning rate
learning_rate = 0.1

# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
n # <__main__.neuralNetwork at 0x2778590e5e0>

查看数据集

# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
len(training_data_list) # 60001
# 其中第1行为列名 ,后面需要去掉,只保留后60000条

开始训练,该步骤需要等待一会,才能训练完成

# train the neural network
# 训练神经网络
# epochs is the number of times the training data set is used for training
# epochs次数,循环训练5次
epochs = 5

for e in range(epochs):
    # go through all records in the training data set
    # 每次取60000条数据,剔除列名
    for record in training_data_list[1:]:
        # split the record by the ',' commas
        # 用逗号分割
        all_values = record.split(',')
        # scale and shift the inputs
        # 对图像的像素值进行归一化操作
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desired label which is 0.99)
        # 创建一个包含十个输出的向量,初始值为0.01
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        # 对 label的 位置设置为0.99
        targets[int(all_values[0])] = 0.99
        # 开始训练
        n.train(inputs, targets)
        pass
    pass

查看训练后的权重

n.who.shape # (10, 200)
n.who

输出为:
在这里插入图片描述

n.wih.shape # ((200, 784)
n.wih

输出为:
在这里插入图片描述

查看测试集

# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
len(test_data_list) # 10001
# 其中第1行为列名 ,后面需要去掉,只保留后10000条

预测测试集

# test the neural network
# 测试网络
# scorecard for how well the network performs, initially empty
# 计算网络性能,初始为空
scorecard = []

# go through all the records in the test data set
# 传入所有的测试集
for record in test_data_list[1:]:
    # split the record by the ',' commas
    # 使用逗号分割
    all_values = record.split(',')
    # correct answer is first value
    # 获取当前的测试集的label
    correct_label = int(all_values[0])
    # scale and shift the inputs
    # 归一化操作
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    # 对测试集进行预测
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    # 获取输出中最大的概率的位置
    label = numpy.argmax(outputs)
    # append correct or incorrect to list
    # 按照预测的正确与否分别填入1和0
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        # 答案匹配正确,输入1
        scorecard.append(1)
    else:
        # network's answer doesn't match correct answer, add 0 to scorecard
        # 答案不匹配,输入0
        scorecard.append(0)
        pass
    
    pass

计算网络性能

# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9725

输出为:

performance = 0.9725

测试手写的图片

导入库

# helper to load data from PNG image files
import imageio.v3
# glob helps select multiple files using patterns
import glob

定义数据集列表

# our own image test data set
our_own_dataset = []

读取多个数据

# glob.glob获取一个可编历对象,使用它可以逐个获取匹配的文件路径名。glob.glob同时获取所有的匹配路径
for image_file_name in glob.glob('my_own_images/2828_my_own_?.png'):
    # 输出 匹配到的文件
    print ("loading ... ", image_file_name)
    # use the filename to set the correct label
    # 文件名中包含了文件的正确标签
    label = int(image_file_name[-5:-4])
    # load image data from png files into an array
    # 把 图片转换为 文本
    img_array = imageio.v3.imread(image_file_name, mode='F')
    # reshape from 28x28 to list of 784 values, invert values
    # 把28*28的矩阵转换为 784和1维
    img_data  = 255.0 - img_array.reshape(784)
    # then scale data to range from 0.01 to 1.0
    # 对数据进行归一化操作,最小值为0.01
    img_data = (img_data / 255.0 * 0.99) + 0.01
    print(numpy.min(img_data))
    print(numpy.max(img_data))
    # append label and image data  to test data set
    # 把 laebl和图片拼接起来
    record = numpy.append(label,img_data)
    print(record.shape)
    # 把封装好的 一维存储在列表中
    our_own_dataset.append(record)
    pass

读取的数据如下:

在这里插入图片描述
输出为,
在这里插入图片描述

查看手写的图片

matplotlib.pyplot.imshow(our_own_dataset[0][1:].reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

输出对应的像数值

# print(our_own_dataset[0])
print(our_own_dataset[0][0],"\n",our_own_dataset[0][1:20])

输出如下:
在这里插入图片描述

测试手写数据效果

own_list = []
for i in our_own_dataset:
    correct_label = i[0]
    img_data = i[1:]
    # query the network
    outputs = n.query(img_data)
#     print ('outputs预测',outputs)

    # the index of the highest value corresponds to the label
    label = numpy.argmax(outputs)
    print('真实',correct_label,"network says ", label)
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        own_list.append(1)
    else:
        # network's answer doesn't match correct answer, add 0 to scorecard
        own_list.append(0)
        
print("own_list",own_list)

输出为:
在这里插入图片描述

带有反向查询的神经网络实现

该部分代码与 从零构建神经网络大多类似,代码如下:

导入库

import numpy
# scipy.special for the sigmoid function expit(), and its inverse logit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

定义带有反向查询的神经网络

# neural network class definition
# 神经网络类定义
class neuralNetwork:
    
    
    # initialise the neural network
    # 初始化神经网络
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        # set number of nodes in each input, hidden, output layer
        # 设置每个输入、隐藏、输出层的节点数
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        
        # link weight matrices, wih and who
        # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
        # w11 w21
        # w12 w22 etc 
        # 链接权重矩阵,wih和who
        # 数组内的权重w_i_j,链接从节点i到下一层的节点j
        # w11 w21
        # w12 w22 等等
        self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
        self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))

        # learning rate 学习率
        self.lr = learningrate
        
        # activation function is the sigmoid function
        # 激活函数是sigmoid函数
        self.activation_function = lambda x: scipy.special.expit(x)
        self.inverse_activation_function = lambda x: scipy.special.logit(x)
        
        pass

    
    # train the neural network
    # 训练神经网络
    def train(self, inputs_list, targets_list):
        # convert inputs list to 2d array
        # 将输入列表转换为2d数组
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        
        # calculate signals into hidden layer
        # 计算输入到隐藏层的信号
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        # 计算从隐藏层输出的信号
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        # 计算最终输出层的信号
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        # 计算从最终输出层输出的信号
        final_outputs = self.activation_function(final_inputs)
        
        # output layer error is the (target - actual)
        # 输出层误差是(目标 - 实际)
        output_errors = targets - final_outputs
        # hidden layer error is the output_errors, split by weights, recombined at hidden nodes
        # 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合
        hidden_errors = numpy.dot(self.who.T, output_errors) 
        
        # update the weights for the links between the hidden and output layers
        # 更新隐藏层和输出层之间的权重
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
        
        # update the weights for the links between the input and hidden layers
        # 更新输入层和隐藏层之间的权重
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
        
        pass

    
    # query the neural network
    # 查询神经网络
    def query(self, inputs_list):
        # convert inputs list to 2d array
        # 将输入列表转换为2d数组
        inputs = numpy.array(inputs_list, ndmin=2).T
        
        # calculate signals into hidden layer
        # 计算输入到隐藏层的信号
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        # 计算从隐藏层输出的信号
        hidden_outputs = self.activation_function(hidden_inputs)
        
        # calculate signals into final output layer
        # 计算最终输出层的信号
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        # 计算从最终输出层输出的信号
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs

    
    # backquery the neural network
    # we'll use the same termnimology to each item, 
    # eg target are the values at the right of the network, albeit used as input
    # eg hidden_output is the signal to the right of the middle nodes
    # 反向 查询
    def backquery(self, targets_list):
        # transpose the targets list to a vertical array
        # 将目标列表转置为垂直数组
        final_outputs = numpy.array(targets_list, ndmin=2).T
        
        # calculate the signal into the final output layer
        # 计算最终输出层的输入信号
        final_inputs = self.inverse_activation_function(final_outputs)

        # calculate the signal out of the hidden layer
        # 计算隐藏层的输出信号
        hidden_outputs = numpy.dot(self.who.T, final_inputs)
        # scale them back to 0.01 to .99
        # 将隐藏层的输出信号缩放到0.01到0.99之间
        hidden_outputs -= numpy.min(hidden_outputs)
        hidden_outputs /= numpy.max(hidden_outputs)
        hidden_outputs *= 0.98
        hidden_outputs += 0.01
        
        # calculate the signal into the hidden layer
        # 计算隐藏层的输入信号
        hidden_inputs = self.inverse_activation_function(hidden_outputs)
        
        # calculate the signal out of the input layer
        # 计算输入层的输出信号
        inputs = numpy.dot(self.wih.T, hidden_inputs)
        # scale them back to 0.01 to .99
        # 将输入层的输出信号缩放到0.01到0.99之间
        inputs -= numpy.min(inputs)
        inputs /= numpy.max(inputs)
        inputs *= 0.98
        inputs += 0.01
        
        return inputs
    

初始化神经网络

# number of input, hidden and output nodes
# 定义网络的输入 隐藏 输出节点数量
input_nodes = 784
hidden_nodes = 200
output_nodes = 10

# learning rate
# 学习率
learning_rate = 0.1

# create instance of neural network
# 实例化网络
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)

加载数据集

# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

训练模型

# train the neural network

# epochs is the number of times the training data set is used for training
epochs = 5

for e in range(epochs):
    print("\n epochs------->",e)
    num = 0
    # go through all records in the training data set
    data_list = len(training_data_list[1:])
    for record in training_data_list[1:]:
        # split the record by the ',' commas
        all_values = record.split(',')
        # scale and shift the inputs
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desired label which is 0.99)
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        targets[int(all_values[0])] = 0.99
        n.train(inputs, targets)
        num +=1 
        if num %500==0:
            print("\r epochs {} 当前进度为 {}".format(e,num/data_list),end="")
        pass
    pass

输出为:

epochs-------> 0
epochs 0 当前进度为 1.091666666666666744
epochs-------> 1
epochs 1 当前进度为 1.091666666666666744
epochs-------> 2
epochs 2 当前进度为 1.091666666666666744
epochs-------> 3
epochs 3 当前进度为 1.091666666666666744
epochs-------> 4
epochs 4 当前进度为 1.091666666666666744

加载测试数据

# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

加载测试数据

# test the neural network

# scorecard for how well the network performs, initially empty
scorecard = []

# go through all the records in the test data set
for record in test_data_list[1:]:
    # split the record by the ',' commas
    all_values = record.split(',')
    # correct answer is first value
    correct_label = int(all_values[0])
    # scale and shift the inputs
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    label = numpy.argmax(outputs)
    # append correct or incorrect to list
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        scorecard.append(1)
    else:
        # network's answer doesn't match correct answer, add 0 to scorecard
        scorecard.append(0)
        pass
    
    pass

计算模型性能

# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9737

根据模型反向生成图片

# run the network backwards, given a label, see what image it produces

# label to test
label = 0
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)

# get image data
image_data = n.backquery(targets)

# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565839.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据挖掘实验(Apriori,fpgrowth)

Apriori&#xff1a;这里做了个小优化&#xff0c;比如abcde和adcef自连接出的新项集abcdef&#xff0c;可以用abcde的位置和f的位置取交集&#xff0c;这样第n项集的计算可以用n-1项集的信息和数字本身的位置信息计算出来&#xff0c;只需要保存第n-1项集的位置信息就可以提速…

去哪儿网开源的一个对应用透明,无侵入的Java应用诊断工具

今天 V 哥给大家带来一款开源工具Bistoury&#xff0c;Bistoury 是去哪儿网开源的一个对应用透明&#xff0c;无侵入的java应用诊断工具&#xff0c;用于提升开发人员的诊断效率和能力。 Bistoury 的目标是一站式java应用诊断解决方案&#xff0c;让开发人员无需登录机器或修改…

microk8s拉取pause镜像卡住

前几天嫌服务器上镜像太多占空间&#xff0c;全部删掉了&#xff0c;今天看到 microk8s 更新了 1.30 版本&#xff0c;果断更新&#xff0c;结果集群跑不起来了。 先通过 microk8s.kubectl get pods --all-namespaces 命令看看 pod 状态。 如上图可以看到&#xff0c;所有的业…

物联网通信中NB-IoT、Cat.1、Cat.M该如何选择?

物联网通信中NB-IoT、Cat.1、Cat.M该如何选择? 参考链接:物联网通信中NB-IoT、Cat.1、Cat.M该如何选择?​​ 在我们准备设计用于大规模联网的物联网设备时,选择到适合的LTE IoT标准将是我们遇到的难点。这是我们一开始设计产品方案就需要解决的一个问题,其决定我们设备需…

HarmonyOS ArkUI实战开发-NAPI 加载原理(下)

上一节笔者给大家讲解了 JS 引擎解释执行到 import 语句的加载流程&#xff0c;总结起来就是利用 dlopen() 方法的加载特性向 NativeModuleManager 内部的链接尾部添加一个 NativeModule&#xff0c;没有阅读过上节文章的小伙伴&#xff0c;笔者强烈建议阅读一下&#xff0c;本…

ChatGPT在线网页版(与GPT Plus会员完全一致)

ChatGPT镜像 今天在知乎看到一个问题&#xff1a;“平民不参与内测的话没有账号还有机会使用ChatGPT吗&#xff1f;” 从去年GPT大火到现在&#xff0c;关于GPT的消息铺天盖地&#xff0c;真要有心想要去用&#xff0c;途径很多&#xff0c;别的不说&#xff0c;国内GPT的镜像…

【PostgreSQL】Postgres数据库安装、配置、使用DBLink详解

目录 一、技术背景1.1 背景1.2 什么是 DBLink 二、安装配置 DBLink2.1 安装 DBLink2.2 配置 DBLink1. 修改 postgresql.conf2. 修改 pg_hba.conf 三、DBLink 使用3.1 数据准备3.2 DBLink 使用1. 创建 DBLink 连接2. 使用 DBLink 进行查询3. 使用 DBLink 进行增删改4. 使用 DBLi…

第G8周:ACGAN任务

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制&#x1f680; 文章来源&#xff1a;K同学的学习圈子 参考论文 这周主要任务就是根据之前GAN&#xff0c;CGAN&#xff0c;SGAN网络架构搭建…

照片相似性搜索引擎Embed-Photos;赋予大型语言模型(LLMs)视频和音频理解能力;OOTDiffusion的基础上可控制的服装驱动图像合成

✨ 1: Magic Clothing Magic Clothing是一个以可控制的服装驱动图像合成为核心的技术项目&#xff0c;建立在OOTDiffusion的基础上 Magic Clothing是一个以可控制的服装驱动图像合成为核心的技术项目&#xff0c;建立在OOTDiffusion的基础上。通过使用Magic Clothing&#xf…

CountDownLatch倒计时器源码解读与使用

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 目录 1. 前言 2. CountDownLatch有什么用 3. CountDownLatch底层原理 3.1. count…

软考高项(已通过,E类人才)-学习笔记材料梳理汇总

软考高项&#xff0c;即软考高级信息系统项目管理师&#xff0c;全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试中的高级水平测试。适用于从事计算机应用技术、软件、网络、信息系统和信息服务等领域的专业人员&#xff0c;以及各级企业管理人员和从事项目…

51单片机使用两个按钮控制LED灯不同频率的闪烁

#include <reg52.h>sbit button1 P1^1; // 间隔2秒的按钮 sbit button2 P1^5; // 间隔0.6秒的按钮sbit led P1^3;unsigned int cnt1 0; // 设置LED1灯的定时器溢出次数 unsigned int cnt2 0; // 设置LED2灯的定时器溢出次数 unsigned int flg1 0; // 模式1的标识值…

互联网扭蛋机小程序:打破传统扭蛋机的局限,提高销量

扭蛋机作为一种适合全年龄层的娱乐消费方式&#xff0c;深受人们的喜欢&#xff0c;通过一个具有神秘性的商品给大家带来欢乐。近几年&#xff0c;扭蛋机在我国的发展非常迅速&#xff0c;市场规模在不断上升。 经过市场的发展&#xff0c;淘宝线上扭蛋机小程序开始流行起来。…

个人网站的SEO优化系列——如何实现搜索引擎的收录

如果你自己做了一个网站&#xff0c;并且想让更多的人知道你的网站&#xff0c;那么无非就是两种途径 一、自己进行宣传&#xff0c;或者花钱宣传 二、使用搜索引擎的自然流量 而如果搜索引擎都没有收录你的站点&#xff0c;别说是自然流量&#xff0c;就算是使用特定语句【sit…

递归的详细讲解

概述 简介 程序调用自身的编程技巧称为递归&#xff0c;递归解决问题通常名为暴力搜索 三要素 明确递归终止条件 给出递归终止时的处理办法 可以提取重复逻辑&#xff0c;缩小问题规模 优点 递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算&#xff0c;大大地减…

windows SDK编程 --- 消息(3)

前置知识 一、消息的分类 1. 鼠标消息 处理与鼠标交互相关的事件&#xff0c;比如移动、点击和滚动等。例如&#xff1a; WM_MOUSEMOVE: 当鼠标在窗口客户区内移动时发送。WM_LBUTTONDOWN: 当用户按下鼠标左键时发送。WM_LBUTTONUP: 当用户释放鼠标左键时发送。WM_RBUTTOND…

[2024更新]如何从Android恢复已删除的相机照片?

相信大家都经历过Android手机误删相机图片的经历。您是否正在寻找一种可行的方法来挽救这些丢失的照片&#xff1f;如果这是你迫切想解决的问题&#xff0c;那么这篇文章绝对可以帮助你。然而&#xff0c;与其考虑如何从Android恢复已删除的相机照片&#xff0c;我们更愿意建议…

激光雷达(LiDAR)面临的主要问题与挑战

本文讨论目前激光雷达在汽车、机器人以及无人机等场景应用时面临的一些问题和挑战,包括成本、尺寸、系统复杂性、杂散反射、续航,以及安全性等方面。 成本 一直以来,激光雷达的成本都是影响其广泛应用的关键因素。从最早的上万美元一颗,经过近十年的发展,激光雷达的价格…

20240331-1-基于深度学习的模型

基于深度学习的模型 知识体系 主要包括深度学习相关的特征抽取模型&#xff0c;包括卷积网络、循环网络、注意力机制、预训练模型等。 CNN TextCNN 是 CNN 的 NLP 版本&#xff0c;来自 Kim 的 [1408.5882] Convolutional Neural Networks for Sentence Classification 结…

网络安全数字孪生:一种新颖的汽车软件解决方案

摘要 随着汽车行业转变为数据驱动的业务&#xff0c;软件在车辆的开发和维护中发挥了核心作用。随着软件数量的增加&#xff0c;相应的网络安全风险、责任和监管也随之增加&#xff0c;传统方法变得不再适用于这类任务。相应的结果是整车厂和供应商都在努力应对汽车软件日益增加…