【三维Dvhop定位】基于麻雀搜索算法的多通信半径和跳距加权的三维Dvhop定位算法【Matlab代码#81】

文章目录

    • 【可更换其他算法,`获取资源`请见文章第6节:资源获取】
    • 1. Dvhop定位算法
    • 2. 麻雀搜索算法
    • 3. 多通信半径和跳距加权策略
      • 3.1 多通信半径策略
      • 3.2 跳距加权策略
    • 4. 部分代码展示
    • 5. 仿真结果展示
    • 6. 资源获取


【可更换其他算法,获取资源请见文章第6节:资源获取】


1. Dvhop定位算法

根据距离矢量和 GPS定位原理,2001年,Nieuleseu等人提出了 DV-Hop传感器节点定位算法,其只包含少数锚节点,剩余节点为未知节点,需要通过定位算法来确定它们的位置,具有无需测量距离,硬件要求低等点,在硬件条件有限的WSN得到了广泛的应用。

DV-Hop算法的定位步骤如下:
(1)各锚节点向通信范围内的邻居节点广播自身的位置信息。接收节点则记录到每个锚节点的最小跳数,同时忽略来自同一个锚节点的较大的跳数信息,而后将跳数值加1转发给邻居节点。
(2)每个锚节点根据所记录的其他锚节点的坐标信息和跳数,通过式(1)估算网络平均跳距距离。
在这里插入图片描述
式中(少了z坐标),j为锚节点i数据表中的其他锚节点号,hopSij为锚节点i和j之间的跳数。
锚节点将所计算的平均跳距广播至整个网络后,未知节点仅记录所收到的第一个平均跳距,并向邻居节点转发,未知节点接收到平均跳距后,跟据所记录的跳数信息,按式(2)估算未知节点 i 到某个锚节点的距离:
在这里插入图片描述
(3)设P1(x1,y1,z1), … ,Pn(xm,ym,zm)表示m个锚节点的坐标位置,待定位节点D的位置为(x,y,z),其与标节点估计距离分别为d1, d2, … , dm,可以建立如下方程。
在这里插入图片描述
用线性方程组表示为AL= b,其中,
在这里插入图片描述

采用最小二乘法得到方程组的解为:
在这里插入图片描述
该仿真需要设定节点覆盖范围,总节点数,信标节点数,通信半径等参数,未知节点数等于总节点数减去锚节点数。(下面式子中少了z坐标)采用归一化平均定位误差作为评价指标:
在这里插入图片描述

2. 麻雀搜索算法

此处不再介绍。

3. 多通信半径和跳距加权策略

3.1 多通信半径策略

设网络通信半径为 R R R,将锚节点与邻居节点间分为 m m m级,网络中各信标节点与其邻居节点的实际距离为 d d d,跳数记为 H H H
H = { 1 m , 0 < d ≤ R m i m , ( i − 1 ) R m < d ≤ i R m 1 , ( m − 1 ) R m < d ≤ R (1) H=\begin{cases} & \frac{1}{m} , 0<d\le \frac{R}{m} \\ & \frac{i}{m} , \frac{(i-1)R}{m} <d\le \frac{iR}{m} \\ & 1 , \frac{(m-1)R}{m}<d\le R \end{cases}\tag{1} H= m1,0<dmRmi,m(i1)R<dmiR1,m(m1)R<dR(1)
经过改进后,锚节点与邻居节点的跳数值不再是整数,是更加精确的小数,与距离更接近正比关系,有效地提高了数据的精确性,减小定位误差。

3.2 跳距加权策略

在原始Dvhop定位算法中,设未知节点坐标为 D ( x , y , z ) D(x,y,z) D(x,y,z),能与该未知节点通信的锚节点为 A 1 ( x 1 , y 1 , z 1 ) , A 2 ( x 2 , y 2 , z 2 ) , . . . , A n ( x n , y n , z n ) A_{1}(x_{1},y_{1},z_{1}),A_{2}(x_{2},y_{2},z_{2}),...,A_{n}(x_{n},y_{n},z_{n}) A1(x1,y1,z1)A2(x2,y2,z2)...An(xn,yn,zn),这些锚节点的平均每跳距离为 h o p s i z e 1 , h o p s i z e 2 , . . . , h o p s i z e n hopsize_{1},hopsize_{2},...,hopsize_{n} hopsize1hopsize2...hopsizen,到 D ( x , y , z ) D(x,y,z) D(x,y,z)的跳数为 h o p 1 , h o p 2 , . . . , h o p n hop_{1},hop_{2},...,hop_{n} hop1hop2...hopn,那么 D ( x , y , z ) D(x,y,z) D(x,y,z) A 1 ( x 1 , y 1 , z 1 ) A_{1}(x_{1},y_{1},z_{1}) A1(x1,y1,z1)的距离 r i r_{i} ri为:
r i = h o p i ∗ h o p s i z e (2) r_{i}=hop_{i}*hopsize\tag{2} ri=hopihopsize(2)
由于 h o p s i z e hopsize hopsize是取离未知节点最近的锚节点的平均跳距作为未知节点到所有锚节点的平均跳距,但是实际网络中节点在不同区域的分布状况是不同的,平均每跳距离也是不同的,原始Dvhop算法用单一的平均跳距不能正确反应网络状况,误差较大。
本文用下面式子来修正未知节点平均跳距:
w i = 1 h o p i ∑ j = 1 n 1 h o p j (3) w_{i}=\frac{\frac{1}{hop_{i}} }{\sum_{j=1}^{n}\frac{1}{hop_{j}} }\tag{3} wi=j=1nhopj1hopi1(3)
h o p s i z e i = w i ∗ h o p s i z e i (4) hopsize_{i}= w_{i}*hopsize_{i}\tag{4} hopsizei=wihopsizei(4)
通过上面两个式子的处理,每个能与未知节点通信的信标节点的平均跳距都参与计算未知节点平均跳距,每个信标节点平均跳距都根据与未知节点的距离远近进行了加权处理,使得每个未知节点根据平均跳距计算自身坐标时更接近网络的真实情况。

4. 部分代码展示

%% 基于麻雀优化算法的多通信半径和跳距加权DVHop定位算法

%BorderLength ----- 正方形区域的边长,单位m
%NodeAmount ----- 网络节点的个数
%BeaconAmount ----- 信标节点数
%UnAmount ----- 未知节点数
%Sxy ----- 用于存储节点的序号,横坐标,纵坐标的矩阵
%Beacon ----- 信标节点坐标矩阵
%UN ----- 未知节点坐标矩阵
%Distance ----- 未知节点到信标节点距离矩阵
%h ----- 节点间初始跳数矩阵
%X ----- 节点估计坐标初始矩阵,X = [x,y]
%R ----- 节点间的通信距离,一般为10-100m
clear;close all;clc;

BorderLength = 40; %区域边界范围,200x200
NodeAmount = 100; %总的节点数200
BeaconAmount = 20; %信标节点数(锚节点)
UnAmount = NodeAmount - BeaconAmount; %未知节点数
R = 18; %通信距离

%在区域范围内随机生成节点,即总节点数NodeAmount个坐标
AreaC = BorderLength.*rand(3,NodeAmount);%[x1,...,xn;y1,...,yn;];
%为每个点添加序号,如第1,2,3。放在第1行
data = [(1:NodeAmount);AreaC];
%信标坐标信息
BeaconData = data(2:4,1:BeaconAmount);%提取2,3行存放的坐标
UnKnownData = data(2:4,BeaconAmount+1:end);%提取剩下的坐标为未知节点坐标
%画图
figure
plot3(BeaconData(1,:),BeaconData(2,:),BeaconData(3,:),'r*','linewidth',1.5);%绘制信标(锚节点)
hold on
plot3(UnKnownData(1,:),UnKnownData(2,:),UnKnownData(3,:),'bo','linewidth',1.5)%绘制未知节点
grid on;
title('* 红色信标节点 蓝色未知节点')

%% 原始Dvhop
[X,d]=Dvhop(BeaconAmount,UnAmount,NodeAmount,R,data,BeaconData);
%% 多通信半径和跳距加权优化的Dvhop
[X_w,d_w]=MRW_Dvhop(BeaconAmount,UnAmount,NodeAmount,R,data,BeaconData);

5. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 资源获取

可更换其他群智能优化算法,获取完整代码资源。👇👇👇👀名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/564921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

德迅云安全数据库审计——如何保障企业数据库安全

在当今快速发展的数字环境中&#xff0c;以人工智能 &#xff08;AI&#xff09; 的兴起和云计算的无处不在为标志&#xff0c;数据库安全的重要性从未如此突出。随着数据库日益成为人工智能算法和基于云的服务的支柱&#xff0c;它们积累了大量的敏感信息&#xff0c;使其成为…

1957C - How Does the Rook Move?

题目链接&#xff1a;How Does the Rook Move? 如图&#xff1a; 因为每行每列都只能放一个棋子&#xff0c;因此我们用绿点来表示下的棋子&#xff0c;发现一个规律&#xff0c;当红色格子都被绿线划过时&#xff0c;那么就不能下棋子。当这个白色点放在xy这个点&#xff0c…

7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解

7.机器学习-十大算法之一拉索回归&#xff08;Lasso&#xff09;算法原理讲解 一摘要二个人简介三前言四原理讲解五算法流程六代码实现6.1 坐标下降法6.2 最小角回归法 七第三方库实现7.1 scikit-learn实现&#xff08;坐标下降法&#xff09;&#xff1a;7.2 scikit-learn 实现…

扫描工具nmap

介绍 说到黑客&#xff0c;知识就是力量。您对目标系统或网络的了解越多&#xff0c;可用的选项就越多。因此&#xff0c;在进行任何利用尝试之前&#xff0c;必须进行适当的枚举。 假设我们获得了一个 IP&#xff08;或多个 IP 地址&#xff09;来执行安全审计。在我们做任何…

第八周学习笔记DAY.1-异常

本课目标 了解异常概念 理解Java异常处理机制 会捕捉异常 会抛出异常 了解Java异常体系结构 什么是异常 异常是指在程序的运行过程中所发生的不正常的事件&#xff0c;它会中断正在运行的程序 生活中&#xff0c;根据不同的异常进行相应的处理&#xff0c;而不会就此中断…

空间金字塔池化SPP、SPPF、ASPP、PPM、ASPP等汇总

Original SPP 最原版的SPP&#xff08;Spatial Pyramid Pooling&#xff09;是14年在何凯明大神的《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》这篇文章中提出的&#xff0c;具体介绍见SPP: Spatial Pyramid Pooling_spatial pyramid …

制造数字化“管理套路”

在当今竞争激烈的市场环境中&#xff0c;制造企业始终关心三个核心问题&#xff1a;生产效率、产品质量、成本控制&#xff0c;所以许多企业渴望加强对生产过程的管理控制。 生产过程是一个相对复杂的过程&#xff0c;涉及到多个环节和因素。从原材料的采购到产品的设计、生产…

JavaSE-15笔记【注解(+2024新)】

文章目录 1.注解概述2.几个常用的JDK内置的注解2.1 Deprecated2.2 Override2.3 SuppressWarnings2.4 FunctionalInterface 3.自定义注解3.1 注解也可以定义属性3.2 注解的使用规则补充 4.元注解4.1 Retention4.2 Target4.3 Documented4.4 Inherited4.5 Repeatable 5.通过反射获…

docker环境搭建

项目环境搭建 1、安装 Linux 虚拟机 &#xff08;1&#xff09;下载安装&#xff1a; VM VirtualBox 下载安装&#xff1a;Downloads – Oracle VM VirtualBox&#xff0c;要先开启CPU虚拟化 &#xff08;2&#xff09;通过vagrant&#xff0c;在VirtualBox中安装虚拟机 下…

500道Python毕业设计题目推荐,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

【Java基础】21.重写(Override)与重载(Overload)

文章目录 一、重写(Override)1.方法重写2.方法的重写规则3.Super 关键字的使用 二、重载(Overload)1.方法重载2.重载规则3.实例 三、重写与重载之间的区别 一、重写(Override) 1.方法重写 重写&#xff08;Override&#xff09;是指子类定义了一个与其父类中具有相同名称、参…

LeetCode - 150. 逆波兰表达式求值

LeetCode - 150. 逆波兰表达式求值 解题思路&#xff1a; 想要解决该题目&#xff0c;我们首先需要知道什么是逆波兰表达式&#xff0c;逆波兰表达式是一种后缀表达式&#xff0c;所谓后缀就是指算符写在后面。 我们平常使用的算式则是一种中缀表达式&#xff0c;如( 1 2 …

Spring基础 SpringAOP

前言 我们都知道Spring中最经典的两个功能就是IOC和AOP 我们之前也谈过SpringIOC的思想 容器编程思想了 今天我们来谈谈SpringAOP的思想 首先AOP被称之为面向切面编程 实际上面向切面编程是面向对象的编程的补充和完善 重点就是对某一类问题的集中处理 前面我们写的统一异常管理…

React Router 6 + Ant Design:构建基于角色的动态路由和菜单

要根据用户的角色生成不同的路由菜单并实现权限控制,你可以采取以下步骤: 定义路由配置 首先,你需要定义一个包含所有可能路由的配置文件,例如: const routes [{path: /dashboard,element: <DashboardPage />,roles: [admin, manager, user]},{path: /users,element:…

设计模式——模板方法

1)模板方法模式(Template Method Pattem)&#xff0c;又叫模板模式(Template Patern)&#xff0c;在一个抽象类公开定义了执行它的方法的模板。它的子类可以按需要重写方法实现&#xff0c;但调用将以抽象类中定义的方式进行。 2)简单说&#xff0c;模板方法模式 定义一个操作中…

Splashtop Cloud RADIUS 解决方案入围教育技术奖

2024年4月17日 加利福尼亚州库比蒂诺 Splashtop 在简化随处办公的远程解决方案领域处于领先地位&#xff0c;该公司自豪地宣布最近入围了《教育技术文摘》&#xff08;EdTech Digest&#xff09;的“2024年教育技术奖”的“炫酷工具”决赛。教育科技奖成立于2010年&#xff0c…

都2024 年了,可以卸载的VS Code 插件

在 VS Code 中&#xff0c;庞大的插件市场提供了丰富多样的扩展功能&#xff0c;以增强编码体验和效率。然而&#xff0c;如果你安装了很多插件&#xff0c;就可能会导致&#xff1a; 性能下降&#xff1a;过多的插件可能导致 VS Code 的启动速度变慢&#xff0c;特别是在启动或…

【自动驾驶车辆-运动控制】运动学模型(Kinematic Model) | 手写数学推导公式 by.Akaxi

【前言】 在设计自动驾驶规控算法时&#xff0c;常常需要获取车辆的各种位姿、角度等信息&#xff0c;要控制车辆的运动&#xff0c;首先要对车辆的运动建立数字化模型&#xff0c;模型建立的越准确&#xff0c;对车辆运动的描述越准确&#xff0c;对车辆的跟踪控制的效果就越…

【Leetcode笔记】236.二叉树的最近公共祖先

文章目录 题目要求ACM运行结果 题目要求 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能…

过滤器Filter和拦截器Interceptor心得

上一篇文章讲了监听器Listener&#xff0c;下面我们来讲一下过滤器和拦截器。 一、过滤器Filter。 首先&#xff0c;servlet容器&#xff08;比如tomcat&#xff09;肯定的要有servlet才能发挥它的光彩。在上古jsp时代&#xff0c;我们会写各种servlet通过不同的请求来实现我…