Spark和Hadoop的安装

实验内容和要求

1.安装HadoopSpark

       进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。

2HDFS常用操作

        使用hadoop用户名登录进入Linux系统,启动Hadoop,参照相关Hadoop书籍或网络资料,或者也可以参考本教程官网的“实验指南”栏目的“HDFS操作常用Shell命令”,使用Hadoop提供的Shell命令完成如下操作:

        (1)启动Hadoop,在HDFS中创建用户目录“/user/hadoop”;

        (2)在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下;

        (3)把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下;

        (4)将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示;

        (5)在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下;

        (6)删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容。

3.  Spark读取文件系统的数据

        (1)在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数;

        (2)在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;

        (3)编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令。

实验环境

VMware 16.1.2 build-17966106

ubuntu-22.04.4-desktop-amd64.iso

Java 11

scala-2.13.13.tgz

hadoop-3.3.6.tar.gz

spark-3.5.1-bin-hadoop3-scala2.13.tgz

sbt-1.9.9.tgz

安装JDK

安装Java

sudo apt update
sudo apt upgrade
sudo apt-get install openjdk-11-jre openjdk-11-jdk

 配置环境变量

vim ~/.bashrc

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

让路径生效

source ~/.bashrc

 验证是否成功

安装Scala

下载解压

Scala 2.13.13 | The Scala Programming Languageicon-default.png?t=N7T8https://www.scala-lang.org/download/2.13.13.html确保文件的路径是~/下载/scala-2.13.13.tgz

将文件解压到/usr/local下并且更名为scala

sudo tar -zxf ~/下载/scala-2.13.13.tgz -C /usr/local   
cd /usr/local/
sudo mv ./scala-2.13.13 ./scala 

配置

让普通用户拥有对scala目录的权限

sudo chown -R hadoop ./scala 

配置环境变量 

vim ~/.bashrc

export PATH=$PATH:/usr/local/scala/bin

source ~/.bashrc

验证是否成功 

安装ssh 

安装

sudo apt install openssh-server

登录

ssh localhost

切换到root用户

su –

修改sshd_config

vim /etc/ssh/sshd_config

添加 PasswordAuthentication yes

配置免密登录

exit                           
cd ~/.ssh/ 
cat ./id_rsa.pub >> ./authorized_keys  
ssh-keygen -t rsa             

一直回车即可

安装hadoop

https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gzicon-default.png?t=N7T8https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gz

下载解压

sudo tar -zxf ~/下载/hadoop-3.3.6.tar.gz -C /usr/local   
cd /usr/local/
sudo mv ./hadoop-3.3.6/ ./hadoop           

配置

sudo chown -R hadoop ./hadoop       # 修改文件权限

添加hadoop环境变量

vim ~/.bashrc

export HADOOP_HOME=/usr/local/hadoop

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin

修改hadoop-env.sh与yarn-env.sh文件

cd  /usr/local/hadoop/etc/hadoop
vim hadoop-env.sh
vim yarn-env.sh

在最后添加

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

修改core-site.xml 和 hdfs-site.xml

cd /usr/local/hadoop/etc/hadoop/
vim  core-site.xml

 将<configuration>内容修改如下:

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/usr/local/hadoop/tmp</value>
        <description>Abase for other temporary directories.</description>
    </property>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
    <property>
        <name>hadoop.http.staticuser.user</name> #解决web端无法删除上传文件
        <value>hadoop</value>
    </property>
</configuration>
vim hdfs-site.xml

  将<configuration>内容修改如下:

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/usr/local/hadoop/tmp/dfs/data</value>
    </property>
</configuration>

格式化NameNode (仅需要执行一次即可,之后不需要执行)

cd /usr/local/hadoop
./bin/hdfs namenode -format

开启 NameNode 和 DataNode 守护进程

cd /usr/local/hadoop
./sbin/start-dfs.sh

配置YARN

修改 mapred-site.xml文件

cd /usr/local/hadoop/etc/hadoop
vim mapred-site.xml

  将<configuration>内容修改如下: 

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

修改vim yarn-site.xml文件

vim vim yarn-site.xml

  将<configuration>内容修改如下: 

<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>localhost</value>
    </property>
</configuration>

修改start-yarn.sh和stop-yarn.sh

cd ./sbin
vim start-yarn.sh
vim stop-yarn.sh

在文件中加入以下三行:

YARN_RESOURCEMANAGER_USER=root

HADOOP_SECURE_DN_USER=yarn

YARN_NODEMANAGER_USER=root

启动YARN

cd /usr/local/hadoop
./sbin/start-yarn.sh

开启历史服务器

cd /usr/local/hadoop
./bin/mapred --daemon start historyserver

localhosticon-default.png?t=N7T8http://localhost:9870/

安装Spark

下载 |Apache Sparkicon-default.png?t=N7T8https://spark.apache.org/downloads.html

sudo tar -zxf ./spark-3.5.1-bin-hadoop3-scala2.13.tgz -C /usr/local
cd /usr/local
sudo mv spark-3.5.1-bin-hadoop3-scala2.13/ spark

配置

sudo chown -R hadoop:hadoop spark   # 此处的 hadoop 为你的用户名

修改spark-env.sh

cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
vim ./conf/spark-env.sh

 在第一行下面添加以下配置信息

export SPARK_MASTER_PORT=7077
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SPARK_MASTER_IP=localhost
export SPARK_LOCAL_IP=localhost

启动spark

cd /usr/local/spark
./sbin/start-all.sh

测试spark

cd /usr/local/spark
bin/run-example SparkPi 2>&1 |grep "Pi is"

启动shell

cd /usr/local/spark
bin/spark-shell

安装sbt

下载解压

下载 |SBT公司 (scala-sbt.org)icon-default.png?t=N7T8https://www.scala-sbt.org/download/

sudo tar -zxvf ./sbt-1.9.9.tgz -C /usr/local
cd /usr/local/sbt

 下面慢可以用这个

echo "deb https://repo.scala-sbt.org/scalasbt/debian all main" | sudo tee /etc/apt/sources.list.d/sbt.list
echo "deb https://repo.scala-sbt.org/scalasbt/debian /" | sudo tee /etc/apt/sources.list.d/sbt_old.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x2EE0EA64E40A89B84B2DF73499E82A75642AC823" | sudo apt-key add
sudo apt-get update
sudo apt-get install sbt

配置

sudo chown -R hadoop /usr/local/sbt
cd /usr/local/sbt
cp ./bin/sbt-launch.jar ./
vim /usr/local/sbt/sbt

 内容如下:

#!/bin/bash
SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar `dirname $0`/sbt-launch.jar "$@"
chmod u+x /usr/local/sbt/sbt

启动sbt

cd /usr/local/sbt
./sbt sbtVersion

新建项目

sudo mkdir -p /example/sparkapp/src/main/scala
cd /example/sparkapp/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala 

 内容如下:

/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
 
object SimpleApp {
def main(args: Array[String]) {
            val logFile = "file:///usr/local/spark/README.md" // Should be some file on your system
            val conf = new SparkConf().setAppName("Simple Application")
            val sc = new SparkContext(conf)
            val logData = sc.textFile(logFile, 2).cache()
            val numAs = logData.filter(line => line.contains("a")).count()
            val numBs = logData.filter(line => line.contains("b")).count()
            println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
    }
}

创建.sbt文件

cd /example/sparkapp
sudo touch build.sbt
sudo vim build.sbt
name := "Simple Project"
version := "1.0"
scalaVersion := "2.13.13"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"

打包

/usr/local/sbt/sbt package

 如果出现无法创建文件的错误,需要在前面加一个sudo.或者整个在root用户下面安装配置。

[error] [launcher] error during sbt launcher: java.io.IOException: Could not create directory /sparkapp/target/global-logging: java.nio.file.AccessDeniedException: /sparkapp/target

执行

cd /example/sparkapp
spark-submit --class "SimpleApp" ./target/scala-2.13/simple-project_2.13-1.0.jar 2>&1 | grep "Lines"

安装Maven

安装

apt install maven

新建测试项目

midir -p /example/sparkapp2/src/main/scala
cd /example/sparkapp2/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
 
object SimpleApp {
def main(args: Array[String]) {
    val logFile = "file:///usr/local/spark/README.md" // Should be some file on your system
            val conf = new SparkConf().setAppName("Simple Application")
            val sc = new SparkContext(conf)
            val logData = sc.textFile(logFile, 2).cache()
            val numAs = logData.filter(line => line.contains("a")).count()
            val numBs = logData.filter(line => line.contains("b")).count()
            println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
    }
}

创建pom.xml文件

cd /example/sparkapp2
sudo touch pom.xml
sudo vim pom.xml
<project>
    <groupId>shuda.hunnu</groupId>
    <artifactId>simple-project</artifactId>
    <modelVersion>4.0.0</modelVersion>
    <name>Simple Project</name>
    <packaging>jar</packaging>
    <version>1.0</version>
    <repositories>
        <repository>
            <id>jboss</id>
            <name>JBoss Repository</name>
            <url>http://repository.jboss.com/maven2/</url>
        </repository>
    </repositories>
    <dependencies>
        <dependency> <!-- Spark dependency -->
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.13</artifactId>
            <version>3.5.1</version>
        </dependency>
    </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>2.13.13</scalaVersion>
          <args>
            <arg>-target:jvm-11</arg>
          </args>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

修改setting.xml文件

sudo vim /usr/share/maven/conf/settings.xml
sudo vim /etc/maven/settings.xml

需要把文件中原本mirror标题的地方给取消注释,然后添加如下内容: 

<mirror>  
      <id>alimaven</id>   
      <name>aliyun maven</name>     
      <url>
      http://maven.aliyun.com/nexus/content/groups/public/</url>  
      <mirrorOf>central</mirrorOf>  
</mirror>

 如果标签缺失就会出现如下报错(双标签变成单标签)

[ERROR] Error executing Maven.
[ERROR] 1 problem was encountered while building the effective settings
[FATAL] Non-parseable settings /usr/share/maven/conf/settings.xml: end tag name </settings> must match start tag name <mirrors> from line 146 (position: TEXT seen ...</activeProfiles>\n  -->\n</settings>... @261:12)  @ /usr/share/maven/conf/settings.xml, line 261, column 12

打包执行

.jar文件的路径可能会发生改变。

sudo /usr/share/maven/bin/mvn package
spark-submit --class "SimpleApp" ./target/simple-project-1.0.jar 2>&1 | grep "Lines"

启动Hadoop,在HDFS中创建用户目录“/user/hadoop”

cd /usr/local/hadoop
./sbin/start-dfs.sh                #启动HDFS
./sbin/start-yarn.sh               #启动YARN
hadoop fs -mkdir -p /user/Hadoop   #创建用户目录/user/hadoop
hadoop fs -ls /user                #检查目录是否创建成功

在Linux系统的本地文件系统的“/home/hadoop”目录下新建一个文本文件test.txt,并在该文件中随便输入一些内容,然后上传到HDFS的“/user/hadoop”目录下

sudo vim test.txt
hadoop fs -put test.txt /user/hadoop

不能重复上传put: `/user/hadoop/test.txt': File exists

把HDFS中“/user/hadoop”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/home/hadoop/下载”目录下

sudo rm test.txt             #先将原始位置上面的test.txt删除
hadoop fs -get /user/hadoop/test.txt /home/hadoop/

将HDFS中“/user/hadoop”目录下的test.txt文件的内容输出到终端中进行显示

hadoop fs -cat /user/hadoop/test.txt

在HDFS中的“/user/hadoop”目录下,创建子目录input,把HDFS中“/user/hadoop”目录下的test.txt文件,复制到“/user/hadoop/input”目录下

hadoop fs -mkdir -p /user/hadoop/input

删除HDFS中“/user/hadoop”目录下的test.txt文件,删除HDFS中“/user/hadoop”目录下的input子目录及其子目录下的所有内容

hadoop fs -rm /user/hadoop/test.txt

hadoop fs -rm -r /user/hadoop/input  #用hdfs dfs 替代hadoop fs也行

这里删除目录是用-r,不能用-rf。-rm: Illegal option -rf

在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数

cd /usr/local/spark
./sbin/start-all.sh
bin/spark-shell #启动spark-shell

val fileData=sc.textFile("file:/home/hadoop/test.txt")
val count=fileData.count()

在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数 

val fileData=sc.textFile("/user/hadoop/test.txt")
val count=fileData.count()

不写file,默认是hdfs

val fileData=sc.textFile("hdfs:/user/hadoop/test.txt")
val count=fileData.count()

编写独立应用程序,读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令

创建项目

sudo mkdir -p /example/sparkapp3/src/main/scala
cd /example/sparkapp3/src/main/scala
sudo touch SimpleApp.scala
sudo vim SimpleApp.scala 
/*HDFStest.scala */

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp {
  def main(args: Array[String]): Unit = {
    val logFile ="hdfs:/user/hadoop/test.txt"
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)
    val logData = sc.textFile(logFile, 2)
    val num = logData.count()
    printf("The num of this file is %d\n", num)
  }
} 

创建.sbt文件 

cd /example/sparkapp3
sudo touch build.sbt
sudo vim build.sbt
name := "Simple Project"
version := "1.0"
scalaVersion := "2.13.13"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.5.1"

 打包执行

这个--class,应该是需要和类名保持一致的,为了方便,我把类名还是改成了SimpleApp.

/usr/local/sbt/sbt package
spark-submit --class " SimpleApp " ./target/scala-2.13/simple-project_2.13-1.0.jar  2>&1 | grep "num" 

 如果这个是直接抄网上的话,有的路径不对(这个路径最好与前面保持一致,网上的就是端口,两种方法的路径都不一样,简直是误人子弟),我也不知道他们是怎么运行出来的,就很无语,而且都是给图片。

总结

在HDFS中使用命令和本地差不多,但是还是有点小区别,前面是用hadoop fs -,或者hdfs dfs -,然后命令的参数可能发生了变化,编写scala程序还是有点小问题,主要卡的最久的就是在网上看了一个觉得可以运行出来,结果一直显示路径错误了,结果仔细一看,放的位置都不一样,服了。

需要在.bashrc中粘贴这些语句。

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64
export PATH=$PATH:/usr/local/scala/bin
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
export PATH=$PATH:$SPARK_HOME/sbin
export LD_LIBRARY_PATH=/usr/local/hadoop/lib/native
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/562939.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MyBatisPlus详解(二)条件构造器Wrapper、自定义SQL、Service接口

文章目录 前言2 核心功能2.1 条件构造器2.1.1 Wrapper2.1.2 QueryWrapper2.1.3 UpdateWrapper2.1.4 LambdaQueryWrapper 2.2 自定义SQL2.2.1 基本用法2.2.2 多表关联 2.3 Service接口2.3.1 IService2.3.1.1 save2.3.1.2 remove2.3.1.3 update2.3.1.4 get2.3.1.5 list2.3.1.6 co…

AlDente Pro for mac最新激活版:电池长续航软件

AlDente Pro是一款专为Mac用户设计的电池管理工具&#xff0c;旨在提供电池安全和健康管理的一站式解决方案。它具备实时监控电池状态的功能&#xff0c;让用户随时了解电池的电量、充电次数、健康状态等信息。 AlDente Pro for mac最新激活版下载 同时&#xff0c;AlDente Pro…

STM32 DA数字模拟转换原理

单片机学习&#xff01; 目录 前言 一、AD与DA 二、AD与DA硬件电路模型 三、运算放大器 四、运放电路 4.1 电压比较器 4.2 反相放大器 4.3 同相放大器 4.4 电压跟随器 五、DA原理 总结 前言 之前文章讲述了STM32中AD模拟数字转换器的内容&#xff0c;文中AD原理中涉及DA原理的内…

用python selenium实现短视频一键推送

https://github.com/coolEphemeroptera/VIVI 效果如下 demo 支持youtube视频搬运

【数据结构】顺序表:与时俱进的结构解析与创新应用

欢迎来到白刘的领域 Miracle_86.-CSDN博客 系列专栏 数据结构与算法 先赞后看&#xff0c;已成习惯 创作不易&#xff0c;多多支持&#xff01; 目录 一、数据结构的概念 二、顺序表&#xff08;Sequence List&#xff09; 2.1 线性表的概念以及结构 2.2 顺序表分类 …

华为开源自研AI框架昇思MindSpore应用案例:数据处理性能优化

如果你对MindSpore感兴趣&#xff0c;可以关注昇思MindSpore社区 数据是整个深度学习中最重要的一环&#xff0c;因为数据的好坏决定了最终结果的上限&#xff0c;模型的好坏只是去无限逼近这个上限&#xff0c;所以高质量的数据输入&#xff0c;会在整个深度神经网络中起到积极…

嵌入式Linux开发实操(十八):Linux音频ALSA开发

应用程序程序员应该使用库API,而不是内核API。alsa库提供了内核API 100%的功能,但增加了可用性方面的主要改进,使应用程序代码更简单、更美观。未来的修复程序或兼容性代码可能会放在库代码中,而不是放在内核驱动程序中。 使用ALSA API和libasound进行简单的声音播放: /*…

用全连接对手写数字识别案例(附解决TensorFlow2.x没有examples问题)

数据集介绍 数据集直接调用可能出现问题&#xff0c;建议从官网直接下载下来&#xff0c;下载存在这四个文件 手写数字识别数据集下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1nqhP4yPNcqefKYs91jp9ng?pwdxe1h 提取码&#xff1a;xe1h 55000行训练数据集&a…

CentOS如何使用Docker部署Plik服务并实现公网访问本地设备上传下载文件

文章目录 1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 本文介绍如何使用Linux docker方式快速安装Plik并且结合Cpolar内网穿透工具实现远程访问&#xff0c;实现随时随地在任意设备上传或者…

Asciinema:一款强大的终端录屏工具

最近看见一个好的终端录屏工具&#xff0c;现在记录一下并进行分享。 终端录屏工具asciinema是一个免费和开源的解决方案&#xff0c;用于记录终端会话并在网上分享。它支持在终端内直接录制&#xff0c;提供播放、复制粘贴和嵌入功能。安装方面&#xff0c;支持多种操作系统&…

Git 原理及使用 (带动图演示)

文章目录 &#x1f308; Ⅰ Git 安装&#x1f319; 01. Linux - centos &#x1f308; Ⅱ Git 工作区、暂存区和版本库&#x1f319; 01. 认识工作区、暂存区和版本库&#x1f319; 02. 使用 Git 管理工作区的文件 &#x1f308; Ⅲ Git 基本操作&#x1f319; 01. 创建本地仓库…

使用代理绕过网站的反爬机制

最近在尝试收集一些网络指标的数据&#xff0c; 所以&#xff0c; 我又开始做爬虫了。 :) 我们在做爬虫的过程中经常会遇到这样的情况&#xff0c;最初爬虫正常运行&#xff0c;正常抓取数据&#xff0c;一切看起来都是那么的美好&#xff0c;然而一杯茶的功夫可能就会出现错误…

YOLOv9改进策略 | Conv篇 | 利用YOLO-MS的MSBlock二次创新RepNCSPELAN4(全网独家创新)

一、本文介绍 本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块)&#xff0c;我们将其用于RepNCSPELAN中组合出一种新的结构&#xff0c;来替换我们网络中的模块可以达到一种轻量化的作用&#xff…

Vue3+TS版本Uniapp:项目前置操作

作者&#xff1a;前端小王hs 阿里云社区博客专家/清华大学出版社签约作者✍/CSDN百万访问博主/B站千粉前端up主 环境&#xff1a;使用vscode进行开发 如果一开始是使用的HbuilderX&#xff0c;请看hbuilderX创建的uniapp项目转移到vscode 为什么选择vscode&#xff1f;有更好…

Ceph 分布式文件系统 搭建及使用

一、Ceph 介绍 在当今数据爆炸式增长的时代&#xff0c;企业对于可靠、可扩展的存储解决方案的需求日益迫切。Ceph 作为一种开源的、可伸缩的分布式存储解决方案&#xff0c;正逐渐成为企业级存储领域的热门选择。Ceph是一种由Radicalbit公司开发的开源分布式存储系统&#xf…

学习微服务nacos遇到的问题

在学习微服务注册到nacos的时候&#xff0c;所有过程都正确了&#xff0c;注册也成功了&#xff0c;但是访问不了调用的地址报错出现问题。 一、引入依赖 在cloud-demo父工程的pom文件中的<dependencyManagement>中引入SpringCloudAlibaba的依赖 1、springboot <pa…

【系统分析师】软件工程

文章目录 1、信息系统生命周期2、软件开发模型2.1 原型及其演化2.2 增量模型和螺旋模型2.3 V模型、喷泉模型、快速应用开发2.4 构件组装模型2.5 统一过程-UP2.6 敏捷方法 3、逆向工程4、净室软件工程 【写在前面】 记录了一系列【系统分析师】文章&#xff0c;点击下面的链接&a…

Python 全栈安全(二)

原文&#xff1a;annas-archive.org/md5/712ab41a4ed6036d0e8214d788514d6b 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第二部分&#xff1a;认证与授权 本书的第二部分是最具商业价值的部分。我这样说是因为它充满了大多数系统需要具备的实用工作流示例&#xf…

Linux 系统systemd(pid=1)占用80端口导致web程序无法启动

背景 linux系统内安装了例如nginx的网站程序&#xff0c;但是无法正常启动&#xff0c;netstat 查看下 80端口被 systemd 占用。 处理方法 注意务必组好快照备份后再操作。 做好备份后将/usr/lib/systemd/system 内http相关的配置文件重命名后重启主机恢复正常。 重启后正常 sy…

分类神经网络2:ResNet模型复现

目录 ResNet网络架构 ResNet部分实现代码 ResNet网络架构 论文原址&#xff1a;https://arxiv.org/pdf/1512.03385.pdf 残差神经网络(ResNet)是由微软研究院的何恺明、张祥雨、任少卿、孙剑等人提出的&#xff0c;通过引入残差学习解决了深度网络训练中的退化问题&#xff…