【机器学习】科学库使用第5篇:Matplotlib,学习目标【附代码文档】

机器学习(科学计算库)完整教程(附代码资料)主要内容讲述:机器学习(常用科学计算库的使用)基础定位、目标,机器学习概述定位,目标,学习目标,学习目标,1 人工智能应用场景,2 人工智能小案例。机器学习概述,1.5 机器学习算法分类学习目标,学习目标,1 监督学习,2 无监督学习,3 半监督学习,4 强化学习。机器学习概述,1.7 Azure机器学习模型搭建实验学习目标,学习目标,Azure平台简介,学习目标,1 深度学习 —— 神经网络简介,2 深度学习各层负责内容。Matplotlib,3.2 基础绘图功能 — 以折线图为例学习目标,学习目标,1 完善原始折线图 — 给图形添加辅助功能,2 在一个坐标系中绘制多个图像,3 多个坐标系显示— plt.subplots(面向对象的画图方法),4 折线图的应用场景。Matplotlib,3.3 常见图形绘制学习目标,学习目标,1 常见图形种类及意义,2 散点图绘制,3 柱状图绘制,4 小结。Numpy,4.2 N维数组-ndarray学习目标,学习目标,1 ndarray的属性,2 ndarray的形状,3 ndarray的类型,4 总结。Numpy,4.4 ndarray运算学习目标,学习目标,问题,1 逻辑运算,2 通用判断函数,3 np.where(三元运算符)。Pandas,5.1Pandas介绍学习目标,学习目标,1 Pandas介绍,2 为什么使用Pandas,3 小结,学习目标。Pandas,5.3 基本数据操作学习目标,学习目标,1 索引操作,2 赋值操作,3 排序,4 总结。Pandas,5.6 文件读取与存储学习目标,学习目标,1 CSV,2 HDF5,3 JSON,4 小结。Pandas,5.8 高级处理-数据离散化学习目标,学习目标,1 为什么要离散化,2 什么是数据的离散化,3 股票的涨跌幅离散化,4 小结。Pandas,5.12 案例学习目标,学习目标,1 需求,2 实现,1.独立同分布(i.i.d.),2.简单解释 — 独立、同分布、独立同分布。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

Matplotlib

学习目标

  • 应用Matplotlib的基本功能实现图形显示
  • 应用Matplotlib实现多图显示
  • 应用Matplotlib实现不同画图种类

3.3 常见图形绘制

学习目标

  • 目标

  • 掌握常见统计图及其意义


Matplotlib能够绘制折线图、散点图、柱状图、直方图、饼图。

我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。

1 常见图形种类及意义

  • 折线图:以折线的上升或下降来表示统计数量的增减变化的统计图

特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)

api:plt.plot(x, y)

  • 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

api:plt.scatter(x, y)

  • 柱状图:排列在工作表的列或行中的数据可以绘制到柱状图中。

特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

api:plt.bar(x, width, align='center', **kwargs)

Parameters:    
x : 需要传递的数据

width : 柱状图的宽度

align : 每个柱状图的位置对齐方式
    {‘center’, ‘edge’}, optional, default: ‘center’

**kwargs :
color:选择柱状图的颜色

  • 直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。

特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)

api:matplotlib.pyplot.hist(x, bins=None)

Parameters:    
x : 需要传递的数据
bins : 组距

  • 饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。

特点:分类数据的占比情况(占比)

api:plt.pie(x, labels=,autopct=,colors)

Parameters:  
x:数量,自动算百分比
labels:每部分名称
autopct:占比显示指定%1.2f%%
colors:每部分颜色

2 散点图绘制

需求:探究房屋面积和房屋价格的关系

房屋面积数据:

x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]

房屋价格数据:

y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]

代码:

# 0.准备数据


x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]



# 1.创建画布


plt.figure(figsize=(20, 8), dpi=100)



# 2.绘制散点图


plt.scatter(x, y)



# 3.显示图像


plt.show()

3 柱状图绘制

需求-对比每部电影的票房收入

电影数据如下图所示:

电影票房数据

  • 准备数据
['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴', '降魔传','追捕','七十七天','密战','狂兽','其它']
[73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]
  • 绘制柱状图

代码:

# 0.准备数据




# 电影名字


movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']


# 横坐标


x = range(len(movie_name))


# 票房数据


y = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]



# 1.创建画布


plt.figure(figsize=(20, 8), dpi=100)



# 2.绘制柱状图


plt.bar(x, y, width=0.5, color=['b','r','g','y','c','m','y','k','c','g','b'])



# 2.1b修改x轴的刻度显示


plt.xticks(x, movie_name)



# 2.2 添加网格显示


plt.grid(linestyle="--", alpha=0.5)



# 2.3 添加标题


plt.title("电影票房收入对比")



# 3.显示图像


plt.show()

参考链接:

​ [

4 小结

  • 折线图【知道】

  • 能够显示数据的变化趋势,反映事物的变化情况。(变化)

  • plt.plot()

  • 散点图【知道】

  • 判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

  • plt.scatter()

  • 柱状图【知道】

  • 绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

  • plt.bar(x, width, align="center")

  • 直方图【知道】

  • 绘制连续性的数据展示一组或者多组数据的分布状况(统计)

  • plt.hist(x, bins)

  • 饼图【知道】

  • 用于表示不同分类的占比情况,通过弧度大小来对比各种分类

  • plt.pie(x, labels, autopct, colors)

Numpy

学习目标

  • 了解Numpy运算速度上的优势
  • 知道数组的属性,形状、类型
  • 应用Numpy实现数组的基本操作
  • 应用随机数组的创建实现正态分布应用
  • 应用Numpy实现数组的逻辑运算
  • 应用Numpy实现数组的统计运算
  • 应用Numpy实现数组之间的运算

4.1 Numpy优势

学习目标

  • 目标

  • 了解Numpy运算速度上的优势

  • 知道Numpy的数组内存块风格
  • 知道Numpy的并行化运算

1 Numpy介绍

Numpy

Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组

Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。

Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

2 ndarray介绍

NumPy provides an N-dimensional array type, the ndarray, 
which describes a collection of “items” of the same type.

NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

学生成绩数据

用ndarray进行存储:

import numpy as np



# 创建ndarray


score = np.array(
[[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])

score

返回结果:

array([[80, 89, 86, 67, 79],
       [78, 97, 89, 67, 81],
       [90, 94, 78, 67, 74],
       [91, 91, 90, 67, 69],
       [76, 87, 75, 67, 86],
       [70, 79, 84, 67, 84],
       [94, 92, 93, 67, 64],
       [86, 85, 83, 67, 80]])

提问:

使用Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组,那么为什么还需要使用Numpy的ndarray呢?

3 ndarray与Python原生list运算效率对比

在这里我们通过一段代码运行来体会到ndarray的好处

import random
import time
import numpy as np
a = []
for i in range(100000000):
    a.append(random.random())



# 通过%time魔法方法, 查看当前行的代码运行一次所花费的时间


%time sum1=sum(a)

b=np.array(a)

%time sum2=np.sum(b)

其中第一个时间显示的是使用原生Python计算时间,第二个内容是使用numpy计算时间:

CPU times: user 852 ms, sys: 262 ms, total: 1.11 s
Wall time: 1.13 s
CPU times: user 133 ms, sys: 653 µs, total: 133 ms
Wall time: 134 ms

从中我们看到ndarray的计算速度要快很多,节约了时间。

机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。

计算量大

Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。

思考:

ndarray为什么可以这么快?

4 ndarray的优势

4.1 内存块风格

ndarray到底跟原生python列表有什么不同呢,请看一张图:

numpy内存地址

从图中我们可以看出ndarray在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。

这是因为ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,而python原生list就只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面Numpy的ndarray不及Python原生list,但在科学计算中,Numpy的ndarray就可以省掉很多循环语句,代码使用方面比Python原生list简单的多。

4.2 ndarray支持并行化运算(向量化运算)

numpy内置了并行运算功能,当系统有多个核心时,做某种计算时,numpy会自动做并行计算

4.3 效率远高于纯Python代码

Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,所以,其效率远高于纯Python代码。

5 小结

  • numpy介绍【了解】

  • 一个开源的Python科学计算库

  • 计算起来要比python简洁高效
  • Numpy使用ndarray对象来处理多维数组

  • ndarray介绍【了解】

  • NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

  • 生成numpy对象:np.array()

  • ndarray的优势【掌握】

  • 内存块风格

    • list -- 分离式存储,存储内容多样化
    • ndarray -- 一体式存储,存储类型必须一样
  • ndarray支持并行化运算(向量化运算)

  • ndarray底层是用C语言写的,效率更高,释放了GIL

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/553005.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

react中关于类式组件和函数组件对props、state、ref的使用

文章中有很多蓝色字体为扩展链接&#xff0c;可以补充查看。 常用命令使用规则 组件编写方式: 1.函数式 function MyButton() { //直接return 标签体return (<>……</>); }2.类 class MyButton extends React.Component { //在render方法中&#xff0c;return…

UE5 C++ 射线检测

一.声明四个变量 FVector StartLocation;FVector ForwardVector;FVector EndLocation;FHitResult HitResult;二.起点从摄像机&#xff0c;重点为摄像机前9999m。射线检测 使用LineTraceSingleByChannel 射线直线通道检测&#xff0c;所以 void AMyCharacter::Tick(float Delt…

GPT国内能用吗

2022年11月&#xff0c;Open AI发布ChatGPT&#xff0c;ChatGPT展现了大型语模型在自然语言处理方面的惊人进步&#xff0c;其生成文本的流畅度和连贯性令人印象深刻&#xff0c;为AI应用打开了新的可能性。 ChatGPT的出现推动了AI技术在各个领域的应用&#xff0c;例如&#x…

Python学习教程(Python学习路线+Python学习视频):Python数据结构

数据结构引言&#xff1a; 数据结构是组织数据的方式&#xff0c;以便能够更好的存储和获取数据。数据结构定义数据之间的关系和对这些数据的操作方式。数据结构屏蔽了数据存储和操作的细节&#xff0c;让程序员能更好的处理业务逻辑&#xff0c;同时拥有快速的数据存储和获取方…

.net9 AOT编绎生成标准DLL,输出API函数教程-中国首创

1&#xff0c;安装VS2022预览版&#xff08;Visual Studio Preview&#xff09; https://visualstudio.microsoft.com/zh-hans/vs/preview/#download-preview 2&#xff0c;选择安装组件&#xff1a;使用C的桌面开发 和 .NET桌面开发 ------------------------------------- …

java八股文知识点讲解(个人认为讲的比较好的)

1、解决哈希冲突——链地址法&#xff1a;【第7章查找】19哈希表的查找_链地址法解决哈希冲突_哔哩哔哩_bilibili 2、解决哈希冲突——开放地址法 &#xff1a; 【第7章查找】18哈希表的查找_开放定址法解决哈希冲突_哔哩哔哩_bilibili 3、小根堆大根堆的创建&#xff1a;选择…

【每日刷题】Day17

【每日刷题】Day17 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 19. 删除链表的倒数第 N 个结点 - 力扣&#xff08;LeetCode&#xff09; 2. 162. 寻找峰值 - 力扣…

1 回归:锂电池温度预测top2 代码部分(一) Tabnet

2024 iFLYTEK A.I.开发者大赛-讯飞开放平台 TabNet&#xff1a; 模型也是我在这个比赛一个意外收获&#xff0c;这个模型在比赛之中可用。但是需要GPU资源&#xff0c;否则运行真的是太慢了。后面针对这个模型我会写出如何使用的方法策略。 比赛结束后有与其他两位选手聊天&am…

《ElementPlus 与 ElementUI 差异集合》el-popconfirm 气泡确认框之插槽写法有差异

ElementUI 直接在 el-button 上配置属性 slot&#xff1b; <el-popconfirm title"确定删除吗&#xff1f;请谨慎操作&#xff01;" confirm"delete"><el-button slot"reference" size"small" type"danger">删…

Word学习笔记之奇偶页的页眉与页码设置

1. 常用格式 在毕业论文中&#xff0c;往往有一下要求&#xff1a; 奇数页右下角显示、偶数页左下角显示奇数页眉为每章标题、偶数页眉为论文标题 2. 问题解决 2.1 前期准备 首先&#xff0c;不论时要求 1、还是要求 2&#xff0c;这里我们都要做一下设置&#xff1a; 鼠…

Adobe Firefly是否将重新定义AI视频编辑领域?|TodayAI

Adobe最近发布了一段令人瞩目的视频&#xff0c;详细展示了其最新推出的Adobe Firefly视频模型。这一模型集成了尖端的生成式人工智能技术&#xff0c;带来了一系列颠覆性的视频编辑功能&#xff0c;引发了业界的广泛关注和讨论。 视频中的旁白充满热情地宣布&#xff1a;“Ad…

【超级简单】vscode进入服务器的docker容器

前提 1、已经运行docker容器 2、已经用vscode链接服务器 在vscode中安装的插件 Dev Containers docker 在容器中安装的依赖 yum install openssh-server yum install openssh-clientsvscode进入服务器的docker容器 找到自己的容器&#xff0c;右键点击&#xff0c;找到…

Jmeter BeanShell调用Java方法加密

1、添加BeanShell前置处理器 由于请求接口时&#xff0c;会传加密参数。加密过程会在请求之前完成&#xff0c;所以需要使用前置处理器中beanshell preprocessor 2、编写BeanShell脚本 ①定义一个beashell变量&#xff1a;phoneNum&#xff0c;在Beanshell中可以直接调用Jmete…

idea运行报错:启动命令过长

JAVA项目&#xff0c;运行的时候报错 Command line is too long. Shorten the command line via JAR manifest or via a classpath file and rerun老问题了&#xff0c;记录一下 解决办法&#xff1a; 1、Edit Configurations 2、点击Modify options设置&#xff0c;勾选S…

janus架构学习

基础介绍 Janus 是由Meetecho设计和开发的开源、通用的基于SFU架构的WebRTC流媒体服务器&#xff0c;它支持在Linux的服务器或MacOS上的机器进行编译和安装。Janus 是使用C语言进行编写的&#xff0c;它的性能十分优秀。 架构 janus为sfu架构 模块结构图 模块说明 core模…

elementui 弹窗展示自动校验表单项bug

表单校验失败一次之后&#xff0c;再次弹出表单&#xff0c;触发自动校验 解决方案&#xff1a; clearValidate() 方法清空表单校验项 this.$nextTick(() > {this.$refs[checkForm].clearValidate() }) 使用nextTick规避报错

chroot -- 限制其他用户liunx空间

目录- 限制其他用户liunx空间 前言开始进入监狱总结 前言 前提 ecs 服务器&#xff0c;centos系统&#xff0c;乌班图系统需要root榕湖 开始 首先&#xff0c;登录到您的ECS机器。创建一个新用户&#xff1a; 使用 adduser 命令创建一个新用户。例如&#xff0c;要创建一个名…

k8s之etcd

1.特点&#xff1a; etcd 是云原生架构中重要的基础组件。有如下特点&#xff1a; 简单&#xff1a;安装配置简单&#xff0c;而且提供了 HTTP API 进行交互&#xff0c;使用也很简单键值对存储&#xff1a;将数据存储在分层组织的目录中&#xff0c;如同在标准文件系统中监…

图像分类:Pytorch实现Vision Transformer(ViT)进行图像分类

图像分类&#xff1a;Pytorch实现Vision Transformer&#xff08;ViT&#xff09;进行图像分类 前言相关介绍ViT模型的基本原理&#xff1a;ViT的特点与优势&#xff1a;ViT的缺点&#xff1a;应用与拓展&#xff1a; 项目结构具体步骤准备数据集读取数据集设置并解析相关参数定…

Vue3项目 网易严选_学习笔记

Vue3项目 网易严选_第一天 主要内容 项目搭建vuex基础路由设计首页顶部和底部布局 学习目标 知识点要求项目搭建掌握vuex基础掌握路由设计掌握首页顶部和底部布局掌握 一、项目搭建 1.1 创建项目 vue create vue-wangyi选择vue3.0版本 1.2 目录调整 大致步骤&#xff…