1 回归:锂电池温度预测top2 代码部分(一) Tabnet

2024 iFLYTEK A.I.开发者大赛-讯飞开放平台

TabNet: 模型也是我在这个比赛一个意外收获,这个模型在比赛之中可用。但是需要GPU资源,否则运行真的是太慢了。后面针对这个模型我会写出如何使用的方法策略。

        比赛结束后有与其他两位选手聊天,他们都是对数据做了很多分析,有的甚至直接使用Lasso就work了,效果还挺不错的。特征工程无敌呀。        

        真个代码部分,了解下有关特征工程的部分就行了,模型部分可以慢慢消化。当作一个新的知识点学习吧。

直接上代码

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from tqdm import tqdm
from sklearn.model_selection import KFold

from pytorch_tabnet.metrics import Metric
from pytorch_tabnet.tab_model import TabNetRegressor
import torch
from torch.optim import Adam, SGD
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingWarmRestarts
from sklearn.metrics import mean_absolute_error
import traceback

import warnings

warnings.filterwarnings("ignore")

plt.rcParams['font.sans-serif'] = ['PingFang HK']  # 用来正常显示中文标签
plt.rcParams["axes.unicode_minus"] = False  # 该语句解决图像中的“-”负号的乱码问题
pd.set_option('precision', 10)
pd.set_option('display.max_rows', None)


# 时间解析模块
def parse_date(train_df=None):
    train_df['datetime'] = pd.to_datetime(train_df['时间'])
    train_df['timestamp'] = train_df['datetime'].astype('int64') / 10000000
    train_df['year'] = train_df['datetime'].dt.year
    train_df['month'] = train_df['datetime'].dt.month
    train_df['day'] = train_df['datetime'].dt.day
    train_df['hour'] = train_df['datetime'].dt.hour
    train_df["minute"] = train_df['datetime'].dt.minute
    train_df['dayofweek'] = train_df['datetime'].dt.dayofweek
    # train_df['datetime'].dt.dayofmonth
    return train_df


def same_position_tempture_resid(train_df, index=[]):
    for i in index:
        train_df[f'下部温度{i}_resid'] = train_df[f'下部温度{i}'] - train_df[f'下部温度设定{i}']
        train_df[f'下部温度{i}_dist_4'] = train_df[f'下部温度设定4'] - train_df[f'下部温度设定{i}']
        train_df[f'下部温度{i}_dist_4_moth_100'] = (train_df[f'下部温度{i}_dist_4'] >= 99) * 1
    return train_df


df_train = pd.read_csv("../data/train.csv")
df_test = pd.read_csv("../data/test.csv")
submit = pd.read_csv("../data/submit.csv")
df_train = parse_date(df_train)
df_test = parse_date(df_test)

df_train = df_train.sort_values("datetime")
df_train = df_train.reset_index(drop=True)
df_train['train'] = 1

df_train.loc[1057, '下部温度9'] = 829

df_test = df_test.sort_values("datetime")
df_test = df_test.reset_index(drop=True)
df_test['train'] = 0

flow_cols = [col for col in df_train.columns if "流量" in col]
up_temp_sets = [col for col in df_train.columns if "上部温度设定" in col]
down_temp_sets = [col for col in df_train.columns if "下部温度设定" in col]
up_tempture = [col for col in df_train.columns if "上部温度" in col and col not in up_temp_sets]
down_tempture = [col for col in df_train.columns if "下部温度" in col and col not in down_temp_sets]

# train_df.columns.tolist()
import re

small_cols = ['下部温度5', '上部温度8', '上部温度9',
              '上部温度10',
              '上部温度11',
              '上部温度12',
              '上部温度13',
              '上部温度14',
              '上部温度15',
              '上部温度16',
              '上部温度17',
              '下部温度3',
              '下部温度4',
              '下部温度6',
              '下部温度7',
              '下部温度8',
              '下部温度9',
              '下部温度10',
              '下部温度11',
              '下部温度12',
              '下部温度13',
              '下部温度14',
              '下部温度15',
              '下部温度16',
              '下部温度17'] + [
                 '上部温度1',
                 '上部温度2',
                 '上部温度3',
                 '上部温度4',
                 '上部温度5',
                 '上部温度6',
                 '上部温度7',
                 '下部温度1',
                 '下部温度2',

             ]


def get_same_temp(test_df, cols):
    for col in cols:
        nums = re.findall("\d+", col)
        num = nums[0]
        if "上部温度" in col:
            print(num, col)
            test_df[col] = test_df[f'上部温度设定{num}']
        elif "下部温度" in col:
            test_df[col] = test_df[f'下部温度设定{num}']
    return test_df


df_test = get_same_temp(df_test, small_cols)
df = pd.concat([df_train, df_test])
df = df.sort_values(['year', 'month', 'day', 'hour', "minute"])
df = df.reset_index(drop=True)

down_label = ['下部温度1', '下部温度2', '下部温度3']
up_label = ['上部温度7', '上部温度1', '上部温度2', '上部温度3', '上部温度4', '上部温度5', '上部温度6']
cat_cols = ['year', 'month', 'day', 'hour', 'minute', 'dayofweek']

keep_cols = df_test.columns.tolist()



def resid_model(y, y_pred):
    # residual plots
    y_pred = pd.Series(y_pred, index=y.index)
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    z = abs(resid) / (y + 0.01)
    # print(z)
    n_outliers = sum(abs(resid) > 10000)
    outliers = y[(abs(resid) > 10000)].index
    print(outliers)
    plt.figure(figsize=(15, 5))
    ax_131 = plt.subplot(1, 3, 1)
    plt.plot(y, y_pred, '.')
    plt.xlabel('y')
    plt.ylabel('y_pred');
    plt.title('corr = {:.3f}'.format(np.corrcoef(y, y_pred)[0][1]))
    ax_132 = plt.subplot(1, 3, 2)
    plt.plot(y, y - y_pred, '.')
    plt.xlabel('y')
    plt.ylabel('y - y_pred');
    plt.title('std resid = {:.3f}'.format(std_resid))

    ax_133 = plt.subplot(1, 3, 3)
    z.plot.hist(bins=50, ax=ax_133)
    plt.xlabel('z')
    plt.title('{:.0f} samples with z>3'.format(n_outliers))
    plt.show()
    # return outliers


def get_down_tempture_sets_resid(df, diffed_col="下部温度设定4",
                                 diff_col='下部温度设定1'):
    distacnce = 0
    if "上部" in diff_col:
        print(f"----- {diff_col}_diff_{diffed_col}")
        df['上部温度设定4_diff_上部温度设定1'] = df['上部温度设定4'] - df['上部温度设定1']
        df[f'{diffed_col}_diff_{diff_col}'] = df[diffed_col] - df[diff_col]
        df['上部温度设定4_div_上部温度设定1'] = df['上部温度设定4'] / df['上部温度设定1']
        df[f'{diffed_col}_div_{diff_col}'] = df[diffed_col] / df[diff_col]

        df['flag'] = (df['上部温度设定4_diff_上部温度设定1'] > 300) * 1
    else:
        df['下部温度设定4_diff_下部温度设定1'] = df['下部温度设定4'] - df['下部温度设定1']
        df['下部温度设定4_div_下部温度设定1'] = df['下部温度设定4'] / df['下部温度设定1']

        df[f'{diffed_col}_diff_{diff_col}'] = df[diffed_col] - df[diff_col]
        df[f'{diffed_col}_div_{diff_col}'] = df[diffed_col] / df[diff_col]

        distacnce = 300

        df['flag'] = (df['下部温度设定4_diff_下部温度设定1'] > 300) * 1
    return df


def get_same_type_tempure(row, df_train, label, woindows):
    try:
        heads = woindows
        train_flag = int(row['train'])
        hour = row['hour']
        minute = row['minute']
        timesamp = row['timestamp']
        flag = row['flag']

        nums = re.findall("\d+", label)
        num = int(nums[0])
        chars = re.findall("(\w+)(\d+)", label)[0][0]
        label_map_set_col = f"{chars}设定{num}"
        set_temps = row[label_map_set_col]
        # (df_train[label_map_set_col]==set_temps)&

        df_temp_ = df_train[
            (df_train[label_map_set_col] == set_temps) & (df_train['flag'] == flag) & (df_train['hour'] == hour) & (
                        df_train['timestamp'] < timesamp)]
        df_temp = df_temp_.tail(woindows)

        # df_temp_2 = df_temp_.head(30)

        if len(df_temp) == 0:
            return set_temps, set_temps, 0, set_temps, set_temps, set_temps
        min_ = df_temp[label].min()
        max_ = df_temp[label].max()
        std_ = df_temp[label].std()
        mean_ = df_temp[label].mean()
        median_ = df_temp[label].median()
        ewm_ = df_temp[label].ewm(span=heads, adjust=False).mean().values[-1]
        del df_temp
        return min_, max_, std_, mean_, median_, ewm_
    except Exception as e:
        print(traceback.format_exc())


def predict_result(df, train_df=None, result_df=None, label="下部温度1"):
    result_cols = result_df.columns.tolist()
    nums = re.findall("\d+", label)
    num = nums[0]
    chars = re.findall("(\w+)(\d+)", label)[0][0]
    df[f'{label}_new_label'] = (df[label] - df[f"{chars}设定{num}"])

    label_new = f'{label}_new_label'
    label_map_set_col = f"{chars}设定{num}"

    df[f'{label_map_set_col}_ratio'] = df[label_map_set_col].pct_change()
    # df[f'{label_map_set_col}_ratio']

    if chars in "下部温度":
        balance_col = "下部温度设定4"
        new_cols = [f'{balance_col}_diff_{label_map_set_col}', f'{balance_col}_div_{label_map_set_col}',
                    '下部温度设定4_diff_下部温度设定1', '下部温度设定4_div_下部温度设定1']
    else:
        balance_col = "上部温度设定4"
        new_cols = list(set(['上部温度设定4_diff_上部温度设定1', '上部温度设定4_div_上部温度设定1',
                             f'{balance_col}_diff_{label_map_set_col}', f'{balance_col}_div_{label_map_set_col}']))

    down_df = get_down_tempture_sets_resid(df, balance_col, diff_col=label_map_set_col)

    train_df = down_df[down_df['train'] == 1].reset_index(drop=True)

    his_feats = []
    for wind in [7, 28]:
        his_feat = [f"{label}_min_{wind}", f"{label}_max_{wind}",
                    f"{label}_std_{wind}", f"{label}_mean_{wind}",
                    f"{label}_median_{wind}", f"{label}_ewm_{wind}"]
        his_feats.extend(his_feat)
        down_df[his_feat] = down_df.apply(lambda x: get_same_type_tempure(x, train_df, label, wind), axis=1,
                                          result_type="expand")
        # return down_df
        # print(down_df[his_feats].isna().sum())
    down_df = down_df.fillna(-99)

    for use_flag in [0, 1]:
        max_epoches = 60
        if use_flag==1:
            max_epoches = 100
        df_train = down_df[(down_df['train'] == 1) & (down_df['flag'] == use_flag)].reset_index(drop=True)
        # df_train = down_train_df
        df_test = down_df[(down_df['train'] == 0) & (down_df['flag'] == use_flag)].reset_index(drop=True)

        # print(df_test.unique())
        print("Nan shape", df_test[his_feats].isna().sum())
        # print(df_test[df_test[his_feats].isna()].head())

        print(down_df.shape, df_train.shape, df_test.shape)

        feats = [f'流量{num}',
                 '上部温度设定1',
                 'year', 'month', 'day', 'hour',
                 'minute', 'dayofweek', ] + new_cols + [f'{label_map_set_col}_ratio'] + his_feats
        feats = list(set(feats))
        cat_cols = ['year', 'month', 'day', 'hour', 'minute', 'dayofweek']

        cat_idxs = [i for i, f in enumerate(feats) if f in cat_cols]
        cat_dims = [df_train[i].nunique() for i in cat_cols]
        # print(df_train[feats].head())
        # print(cat_idxs)
        # print(cat_dims)

        tabnet_params = dict(
            cat_idxs=[],
            cat_dims=[],
            cat_emb_dim=1,
            n_d=16,
            n_a=16,
            n_steps=2,  # 模型获取能力代表
            gamma=2,
            n_independent=2,
            n_shared=2,
            lambda_sparse=0,
            optimizer_fn=Adam,
            optimizer_params=dict(lr=(2e-2)),
            mask_type="entmax",
            scheduler_params=dict(T_0=200, T_mult=1, eta_min=1e-4, last_epoch=-1, verbose=False),
            # 学习速率自动调整
            scheduler_fn=CosineAnnealingWarmRestarts,
            seed=42,
            verbose=10,
            
        )

        split = 5
        # kf = KFold(n_splits=split, shuffle=False, random_state=2021)
        folds = KFold(n_splits=split, shuffle=True, random_state=1314)  # 1314

        oof = np.zeros((len(df_train), 1))
        importance = 0
        pred_y = np.zeros(len(df_test))

        val_all = []
        # for fold, (train_idx, val_idx) in enumerate(train_splits):
        for fold, (train_idx, val_idx) in enumerate(folds.split(df_train)):
            print(f'--------------------------- {len(train_idx)}', fold)
            val_all.extend(val_idx)

            print(f'Training fold {fold + 1}')
            X_train, X_val = df_train.loc[train_idx, feats].values, df_train.loc[val_idx, feats].values

            y_train, y_val = df_train.loc[train_idx, label_new].values.reshape(-1, 1), df_train.loc[
                val_idx, label_new].values.reshape(-1, 1)

            model = TabNetRegressor(**tabnet_params)
            model.fit(
                X_train, y_train,
                eval_set=[(X_val, y_val)],
                max_epochs=max_epoches,
                patience=50,
                batch_size=64,
                virtual_batch_size=32,
                num_workers=8,
                drop_last=False,
                eval_metric=[MYMAE],
                loss_fn=my_mean
            )

            oof[val_idx] = model.predict(X_val)

            # print(model.predict(df_test[feats].values))

            pred_y += model.predict(df_test[feats].values).flatten() / split

        #     if save_model:
        #         joblib.dump(value=model, filename=f'../model/lgb_5fold_{fold}.m')
        print(f'labe = {label} use_flag = {use_flag} mae = ',
              mean_absolute_error(oof.reshape(-1) + df_train[label_map_set_col], df_train[label]))

        # resid_model(df_train[label_new], oof)

        result_df = result_df[result_cols]

        df_test[label + "_add"] = pred_y

        result_df = result_df.merge(df_test[cat_cols + [label + "_add"] + his_feats], on=cat_cols, how="left")
        # print(result_df.head())
        result_df.loc[~result_df[label + "_add"].isna(), label] = result_df.loc[~result_df[
            label + "_add"].isna(), label + "_add"] + result_df.loc[~result_df[
            label + "_add"].isna(), label_map_set_col]

    return result_df.reset_index(drop=True)[result_cols + his_feats]


# df['day'].nunique()
class MYMAE(Metric):
    def __init__(self):
        self._name = "mymae"
        self._maximize = False

    def __call__(self, y_true, y_score):
        return mean_absolute_error(y_true, y_score)


def my_mean(y_pred, y_true):
    return torch.mean(torch.abs(y_true - y_pred)).clone()


# up_label+down_label
for label in tqdm((down_label + up_label)[5:]):
    print(f"-------------------{label}")
    df_test = predict_result(df, df_train, df_test[keep_cols], label)


df_test['上部温度1'] = df_test['上部温度1'].clip(upper=410)
x = pd.concat([df_train, df_test]).sort_values(['year', 'month', 'day', 'hour', "minute"]).reset_index(drop=True)
submit = pd.read_csv("../data/submit.csv")
submit_cols = submit.columns.tolist()
df_test[submit_cols].to_csv("../data/tabnet_submit_his_winds_label_last_5.csv",index=False, encoding='utf_8_sig')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/552992.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《ElementPlus 与 ElementUI 差异集合》el-popconfirm 气泡确认框之插槽写法有差异

ElementUI 直接在 el-button 上配置属性 slot&#xff1b; <el-popconfirm title"确定删除吗&#xff1f;请谨慎操作&#xff01;" confirm"delete"><el-button slot"reference" size"small" type"danger">删…

Word学习笔记之奇偶页的页眉与页码设置

1. 常用格式 在毕业论文中&#xff0c;往往有一下要求&#xff1a; 奇数页右下角显示、偶数页左下角显示奇数页眉为每章标题、偶数页眉为论文标题 2. 问题解决 2.1 前期准备 首先&#xff0c;不论时要求 1、还是要求 2&#xff0c;这里我们都要做一下设置&#xff1a; 鼠…

Adobe Firefly是否将重新定义AI视频编辑领域?|TodayAI

Adobe最近发布了一段令人瞩目的视频&#xff0c;详细展示了其最新推出的Adobe Firefly视频模型。这一模型集成了尖端的生成式人工智能技术&#xff0c;带来了一系列颠覆性的视频编辑功能&#xff0c;引发了业界的广泛关注和讨论。 视频中的旁白充满热情地宣布&#xff1a;“Ad…

【超级简单】vscode进入服务器的docker容器

前提 1、已经运行docker容器 2、已经用vscode链接服务器 在vscode中安装的插件 Dev Containers docker 在容器中安装的依赖 yum install openssh-server yum install openssh-clientsvscode进入服务器的docker容器 找到自己的容器&#xff0c;右键点击&#xff0c;找到…

Jmeter BeanShell调用Java方法加密

1、添加BeanShell前置处理器 由于请求接口时&#xff0c;会传加密参数。加密过程会在请求之前完成&#xff0c;所以需要使用前置处理器中beanshell preprocessor 2、编写BeanShell脚本 ①定义一个beashell变量&#xff1a;phoneNum&#xff0c;在Beanshell中可以直接调用Jmete…

idea运行报错:启动命令过长

JAVA项目&#xff0c;运行的时候报错 Command line is too long. Shorten the command line via JAR manifest or via a classpath file and rerun老问题了&#xff0c;记录一下 解决办法&#xff1a; 1、Edit Configurations 2、点击Modify options设置&#xff0c;勾选S…

janus架构学习

基础介绍 Janus 是由Meetecho设计和开发的开源、通用的基于SFU架构的WebRTC流媒体服务器&#xff0c;它支持在Linux的服务器或MacOS上的机器进行编译和安装。Janus 是使用C语言进行编写的&#xff0c;它的性能十分优秀。 架构 janus为sfu架构 模块结构图 模块说明 core模…

elementui 弹窗展示自动校验表单项bug

表单校验失败一次之后&#xff0c;再次弹出表单&#xff0c;触发自动校验 解决方案&#xff1a; clearValidate() 方法清空表单校验项 this.$nextTick(() > {this.$refs[checkForm].clearValidate() }) 使用nextTick规避报错

chroot -- 限制其他用户liunx空间

目录- 限制其他用户liunx空间 前言开始进入监狱总结 前言 前提 ecs 服务器&#xff0c;centos系统&#xff0c;乌班图系统需要root榕湖 开始 首先&#xff0c;登录到您的ECS机器。创建一个新用户&#xff1a; 使用 adduser 命令创建一个新用户。例如&#xff0c;要创建一个名…

k8s之etcd

1.特点&#xff1a; etcd 是云原生架构中重要的基础组件。有如下特点&#xff1a; 简单&#xff1a;安装配置简单&#xff0c;而且提供了 HTTP API 进行交互&#xff0c;使用也很简单键值对存储&#xff1a;将数据存储在分层组织的目录中&#xff0c;如同在标准文件系统中监…

图像分类:Pytorch实现Vision Transformer(ViT)进行图像分类

图像分类&#xff1a;Pytorch实现Vision Transformer&#xff08;ViT&#xff09;进行图像分类 前言相关介绍ViT模型的基本原理&#xff1a;ViT的特点与优势&#xff1a;ViT的缺点&#xff1a;应用与拓展&#xff1a; 项目结构具体步骤准备数据集读取数据集设置并解析相关参数定…

Vue3项目 网易严选_学习笔记

Vue3项目 网易严选_第一天 主要内容 项目搭建vuex基础路由设计首页顶部和底部布局 学习目标 知识点要求项目搭建掌握vuex基础掌握路由设计掌握首页顶部和底部布局掌握 一、项目搭建 1.1 创建项目 vue create vue-wangyi选择vue3.0版本 1.2 目录调整 大致步骤&#xff…

计算机网络 TCP/IP体系 物理层

一. TCP/IP体系 物理层 1.1 物理层的基本概念 物理层作为TCP/IP网络模型的最低层&#xff0c;负责直接与传输介质交互&#xff0c;实现比特流的传输。 要完成物理层的主要任务&#xff0c;需要确定以下特性&#xff1a; 机械特性&#xff1a;物理层的机械特性主要涉及网络…

CSS3 max/min-content及fit-content、fill-available值的详解

c3中对width的值多了几个值&#xff1a;fill-available, max-content, min-content, 以及fit-content。 1.width:fill-available 我们在页面中扔一个没有其他样式的<div>元素&#xff0c;则&#xff0c;此时&#xff0c;该<div>元素的width表现就是fill-availabl…

SAP打印输出设置

SAP打印输入有很多方式&#xff0c;适合不同的应用场景。 一.打印输出总体概览图 二.前台打印 这个是比较常见的&#xff0c;前端打印的出现减轻了管理员的工作量&#xff0c;用户可以选择自己电脑上的打印机输出&#xff0c;不需要所有打印机都在SAP平台中进行配置&#xff0…

web 学习第六次课程

文章目录 定位 定位 <body><div style"height:100px;width:100px;border:#F00 1px solid;"></div><div style"height:100px;width:100px;border: #00F 1px solid;"></div> </body><body><div style"pos…

Go 语言中的 GIF 图像处理完全指南:`image/gif`的技术与实践

Go 语言中的 GIF 图像处理完全指南&#xff1a;image/gif的技术与实践 概述安装与基础设置导入 image/gif 包初步配置示例&#xff1a;设置一个简单的 GIF 编码环境 读取与解码 GIF 图像读取 GIF 文件解析 GIF 数据 创建与编码 GIF 图像创建 GIF 图像编码 GIF 图像 处理 GIF 动…

【深度学习】wandb模型训练可视化工具使用方法

【深度学习】wandb模型训练可视化工具使用方法 wandb简介功能介绍登陆注册以及API keysproject和runsproject和runs的关系 wandb的配置实验跟踪版本管理Case可视化分析可视化自动调参&#xff08;wandb.sweep&#xff09;配置wandb.sweep1.配置 sweep_config2.初始化 sweep con…

学习STM32第十五天

SPI外设 一、简介 STM32F4XX内部集成硬件SPI收发电路&#xff0c;可以由硬件自动执行时钟生成、数据收发等功能&#xff0c;减轻CPU负担&#xff0c;可配置8位/16位数据帧&#xff0c;高位&#xff08;最常用&#xff09;/低位先行&#xff0c;三组SPI接口&#xff0c;支持DMA…

网站怎么实现HTTPS访问?

网站实现HTTPS的过程主要分为以下几个步骤&#xff1a; 1. 申请SSL证书&#xff1a; - 根据网站需求选择合适的SSL证书类型&#xff0c;DV证书只需验证域名所有权&#xff0c;适用于个人网站或小型项目&#xff1b;OV和EV证书需验证企业身份信息&#xff0c;适用于对信任度要求…