28.利用fminsearch、fminunc 求解最大利润问题(matlab程序)

1.简述

      

1.无约束(无条件)的最优化
fminunc函数
: - 可用于任意函数求最小值
- 统一求最小值问题
- 如求最大值问题:
>对函数取相反数而变成求最小值问题,最后把函数值取反即为函数的最大值。

使用格式如下
1.必须预先把函数存入到一个程序中,(所编的程序一定是只有一个参数, 则当为多元函数时,则x(1),x(2),x(3)… 分别代表每个自变量);
2.fval 为函数的最小值,x0 为自变量初始向量,一般不影响结果(如有 n 个变量(即 n 元函数),则 x0 中就有 n 个元素);
3.exitflag 为退出标志,当它大于 0 时表示函数收敛于 x,当它等于 0 时表示迭代次数超过,当它小于 0 时表示函数不收敛(所以解完题后还必须判断 exitflag 的值是否>0,以决定结果的正误/有效性)
x=fminunc(‘程序名’, x0)
[x,fval]=fminunc()
[x,fval,exitflag]=fminunc()
函数可以用内联函数 inline(‘表达式’)
 

 

关于exitflag matlab帮助文档说明
1
Magnitude of gradient is smaller than the OptimalityTolerance tolerance.
2
Change in x was smaller than the StepTolerance tolerance.
3
Change in the objective function value was less than the FunctionTolerance tolerance.
5
Predicted decrease in the objective function was less than the FunctionTolerance tolerance.
0
Number of iterations exceeded MaxIterations or number of function evaluations exceeded MaxFunctionEvaluations.
-1
Algorithm was terminated by the output function.
-3
Objective function at current iteration went below ObjectiveLimit.
 

 

2.有约束条件的最优化
fminunc函数
(条件顺序:(线性)不等式—(线性)等式—上下限—非线性条件)
左边可为:

x=
[x,fval]=
[x,fval,exitflag]=

右边可为
(1) fmincon(‘程序名’,x0,A,b)
用于线性不等式约束, 即 Ax< =b,A 为系数矩阵,b 为常数项列向量,x0 为初始向量*
(2) fmincon(‘程序名’,x0,A,b,Aeq,beq)
用于线性不等式与线性等式约束,线性等式为 Aeq*x=beq, 其中 Aeq 为系数矩阵,为 beq 列向量
(3) fmincon(‘程序名’,x0, A,b,Aeq,beq, l,u)
其中 l、u 为解的上下限(即解的范围 l<=x<=u)
(如为多元函数:则 l=[x0,y0,z0,….], u=[xn,yn,zn,…])
(4)fmincon(‘程序名’,x0, A,b,Aeq,beq, l,u, ‘程序 2’)
其中 ‘程序 2’ 是用于非线性约束,它的格式为:c(x)<=0 ceq(x)=0
程序形式为:

function [c,ceq]=fu(x)
 c=……;ceq=……;
1
2
注意:
1 如果不使用,必须使用空向量[ ]
2. 解完题后还必须判断 exitflag 的值是否>0,以决定结果的正误—所以最好返回三个结果,看一下 exitflag, 如无效则换一个初始向量 x0
 

 

2.代码

 

主程序:

 

%%   求解最大利润问题
x0=[0,0];
[xo_s,yo_s]=fminsearch('f1215',x0)
[xo_m,yo_m]=fminunc('f1215',x0)

 

 

子程序:

function [x,fval,exitflag,output] = fminsearch(funfcn,x,options,varargin)
%FMINSEARCH Multidimensional unconstrained nonlinear minimization (Nelder-Mead).
%   X = FMINSEARCH(FUN,X0) starts at X0 and attempts to find a local minimizer 
%   X of the function FUN.  FUN is a function handle.  FUN accepts input X and 
%   returns a scalar function value F evaluated at X. X0 can be a scalar, vector 
%   or matrix.
%
%   X = FMINSEARCH(FUN,X0,OPTIONS)  minimizes with the default optimization
%   parameters replaced by values in the structure OPTIONS, created
%   with the OPTIMSET function.  See OPTIMSET for details.  FMINSEARCH uses
%   these options: Display, TolX, TolFun, MaxFunEvals, MaxIter, FunValCheck,
%   PlotFcns, and OutputFcn.
%
%   X = FMINSEARCH(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the function FUN in PROBLEM.objective, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'fminsearch' in PROBLEM.solver. 
%
%   [X,FVAL]= FMINSEARCH(...) returns the value of the objective function,
%   described in FUN, at X.
%
%   [X,FVAL,EXITFLAG] = FMINSEARCH(...) returns an EXITFLAG that describes
%   the exit condition. Possible values of EXITFLAG and the corresponding
%   exit conditions are
%
%    1  Maximum coordinate difference between current best point and other
%       points in simplex is less than or equal to TolX, and corresponding 
%       difference in function values is less than or equal to TolFun.
%    0  Maximum number of function evaluations or iterations reached.
%   -1  Algorithm terminated by the output function.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINSEARCH(...) returns a structure
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the
%   number of function evaluations in OUTPUT.funcCount, the algorithm name 
%   in OUTPUT.algorithm, and the exit message in OUTPUT.message.
%
%   Examples
%     FUN can be specified using @:
%        X = fminsearch(@sin,3)
%     finds a minimum of the SIN function near 3.
%     In this case, SIN is a function that returns a scalar function value
%     SIN evaluated at X.
%
%     FUN can be an anonymous function:
%        X = fminsearch(@(x) norm(x),[1;2;3])
%     returns a point near the minimizer [0;0;0].
%
%     FUN can be a parameterized function. Use an anonymous function to
%     capture the problem-dependent parameters:
%        f = @(x,c) x(1).^2+c.*x(2).^2;  % The parameterized function.
%        c = 1.5;                        % The parameter.
%        X = fminsearch(@(x) f(x,c),[0.3;1])
%        
%   FMINSEARCH uses the Nelder-Mead simplex (direct search) method.
%
%   See also OPTIMSET, FMINBND, FUNCTION_HANDLE.

%   Reference: Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright,
%   Paul E. Wright, "Convergence Properties of the Nelder-Mead Simplex
%   Method in Low Dimensions", SIAM Journal of Optimization, 9(1):
%   p.112-147, 1998.

%   Copyright 1984-2018 The MathWorks, Inc.


defaultopt = struct('Display','notify','MaxIter','200*numberOfVariables',...
    'MaxFunEvals','200*numberOfVariables','TolX',1e-4,'TolFun',1e-4, ...
    'FunValCheck','off','OutputFcn',[],'PlotFcns',[]);

% If just 'defaults' passed in, return the default options in X
if nargin == 1 && nargout <= 1 && strcmpi(funfcn,'defaults')
    x = defaultopt;
    return
end

if nargin < 3, options = []; end

% Detect problem structure input
if nargin == 1
    if isa(funfcn,'struct') 
        [funfcn,x,options] = separateOptimStruct(funfcn);
    else % Single input and non-structure
        error('MATLAB:fminsearch:InputArg',...
            getString(message('MATLAB:optimfun:fminsearch:InputArg')));
    end
end

if nargin == 0
    error('MATLAB:fminsearch:NotEnoughInputs',...
        getString(message('MATLAB:optimfun:fminsearch:NotEnoughInputs')));
end


% Check for non-double inputs
if ~isa(x,'double')
  error('MATLAB:fminsearch:NonDoubleInput',...
    getString(message('MATLAB:optimfun:fminsearch:NonDoubleInput')));
end

n = numel(x);
numberOfVariables = n;

% Check that options is a struct
if ~isempty(options) && ~isa(options,'struct')
    error('MATLAB:fminsearch:ArgNotStruct',...
        getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 3)));
end

printtype = optimget(options,'Display',defaultopt,'fast');
tolx = optimget(options,'TolX',defaultopt,'fast');
tolf = optimget(options,'TolFun',defaultopt,'fast');
maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
maxiter = optimget(options,'MaxIter',defaultopt,'fast');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');

% In case the defaults were gathered from calling: optimset('fminsearch'):
if ischar(maxfun) || isstring(maxfun)
    if strcmpi(maxfun,'200*numberofvariables')
        maxfun = 200*numberOfVariables;
    else
        error('MATLAB:fminsearch:OptMaxFunEvalsNotInteger',...
            getString(message('MATLAB:optimfun:fminsearch:OptMaxFunEvalsNotInteger')));
    end
end
if ischar(maxiter) || isstring(maxiter)
    if strcmpi(maxiter,'200*numberofvariables')
        maxiter = 200*numberOfVariables;
    else
        error('MATLAB:fminsearch:OptMaxIterNotInteger',...
            getString(message('MATLAB:optimfun:fminsearch:OptMaxIterNotInteger')));
    end
end

switch printtype
    case {'notify','notify-detailed'}
        prnt = 1;
    case {'none','off'}
        prnt = 0;
    case {'iter','iter-detailed'}
        prnt = 3;
    case {'final','final-detailed'}
        prnt = 2;
    case 'simplex'
        prnt = 4;
    otherwise
        prnt = 1;
end
% Handle the output
outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
if isempty(outputfcn)
    haveoutputfcn = false;
else
    haveoutputfcn = true;
    xOutputfcn = x; % Last x passed to outputfcn; has the input x's shape
    % Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
    outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
end

% Handle the plot
plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
if isempty(plotfcns)
    haveplotfcn = false;
else
    haveplotfcn = true;
    xOutputfcn = x; % Last x passed to plotfcns; has the input x's shape
    % Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
    plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
end

header = ' Iteration   Func-count     min f(x)         Procedure';

% Convert to function handle as needed.
funfcn = fcnchk(funfcn,length(varargin));
% Add a wrapper function to check for Inf/NaN/complex values
if funValCheck
    % Add a wrapper function, CHECKFUN, to check for NaN/complex values without
    % having to change the calls that look like this:
    % f = funfcn(x,varargin{:});
    % x is the first argument to CHECKFUN, then the user's function,
    % then the elements of varargin. To accomplish this we need to add the 
    % user's function to the beginning of varargin, and change funfcn to be
    % CHECKFUN.
    varargin = [{funfcn}, varargin];
    funfcn = @checkfun;
end

n = numel(x);

% Initialize parameters
rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
onesn = ones(1,n);
two2np1 = 2:n+1;
one2n = 1:n;

% Set up a simplex near the initial guess.
xin = x(:); % Force xin to be a column vector
v = zeros(n,n+1); fv = zeros(1,n+1);
v(:,1) = xin;    % Place input guess in the simplex! (credit L.Pfeffer at Stanford)
x(:) = xin;    % Change x to the form expected by funfcn
fv(:,1) = funfcn(x,varargin{:});
func_evals = 1;
itercount = 0;
how = '';
% Initial simplex setup continues later

% Initialize the output and plot functions.
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'init',itercount, ...
        func_evals, how, fv(:,1),varargin{:});
    if stop
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  prnt > 0
            disp(output.message)
        end
        return;
    end
end

% Print out initial f(x) as 0th iteration
if prnt == 3
    disp(' ')
    disp(header)
    fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, fv(1), how);
elseif prnt == 4
    formatsave.format = get(0,'format');
    formatsave.formatspacing = get(0,'formatspacing');
    % reset format when done
    oc1 = onCleanup(@()set(0,'format',formatsave.format));
    oc2 = onCleanup(@()set(0,'formatspacing',formatsave.formatspacing));
    format compact
    format short e
    disp(' ')
    disp(how)
    disp('v = ')
    disp(v)
    disp('fv = ')
    disp(fv)
    disp('func_evals = ')
    disp(func_evals)
end
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...
        func_evals, how, fv(:,1),varargin{:});
    if stop  % Stop per user request.
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  prnt > 0
            disp(output.message)
        end
        return;
    end
end

% Continue setting up the initial simplex.
% Following improvement suggested by L.Pfeffer at Stanford
usual_delta = 0.05;             % 5 percent deltas for non-zero terms
zero_term_delta = 0.00025;      % Even smaller delta for zero elements of x
for j = 1:n
    y = xin;
    if y(j) ~= 0
        y(j) = (1 + usual_delta)*y(j);
    else
        y(j) = zero_term_delta;
    end
    v(:,j+1) = y;
    x(:) = y; f = funfcn(x,varargin{:});
    fv(1,j+1) = f;
end

% sort so v(1,:) has the lowest function value
[fv,j] = sort(fv);
v = v(:,j);

how = 'initial simplex';
itercount = itercount + 1;
func_evals = n+1;
if prnt == 3
    fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, fv(1), how)
elseif prnt == 4
    disp(' ')
    disp(how)
    disp('v = ')
    disp(v)
    disp('fv = ')
    disp(fv)
    disp('func_evals = ')
    disp(func_evals)
end
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...
        func_evals, how, fv(:,1),varargin{:});
    if stop  % Stop per user request.
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
        if  prnt > 0
            disp(output.message)
        end
        return;
    end
end
exitflag = 1;

% Main algorithm: iterate until 
% (a) the maximum coordinate difference between the current best point and the 
% other points in the simplex is less than or equal to TolX. Specifically,
% until max(||v2-v1||,||v3-v1||,...,||v(n+1)-v1||) <= TolX,
% where ||.|| is the infinity-norm, and v1 holds the 
% vertex with the current lowest value; AND
% (b) the corresponding difference in function values is less than or equal
% to TolFun. (Cannot use OR instead of AND.)
% The iteration stops if the maximum number of iterations or function evaluations 
% are exceeded
while func_evals < maxfun && itercount < maxiter
    if max(abs(fv(1)-fv(two2np1))) <= max(tolf,10*eps(fv(1))) && ...
            max(max(abs(v(:,two2np1)-v(:,onesn)))) <= max(tolx,10*eps(max(v(:,1))))
        break
    end
    
    % Compute the reflection point
    
    % xbar = average of the n (NOT n+1) best points
    xbar = sum(v(:,one2n), 2)/n;
    xr = (1 + rho)*xbar - rho*v(:,end);
    x(:) = xr; fxr = funfcn(x,varargin{:});
    func_evals = func_evals+1;
    
    if fxr < fv(:,1)
        % Calculate the expansion point
        xe = (1 + rho*chi)*xbar - rho*chi*v(:,end);
        x(:) = xe; fxe = funfcn(x,varargin{:});
        func_evals = func_evals+1;
        if fxe < fxr
            v(:,end) = xe;
            fv(:,end) = fxe;
            how = 'expand';
        else
            v(:,end) = xr;
            fv(:,end) = fxr;
            how = 'reflect';
        end
    else % fv(:,1) <= fxr
        if fxr < fv(:,n)
            v(:,end) = xr;
            fv(:,end) = fxr;
            how = 'reflect';
        else % fxr >= fv(:,n)
            % Perform contraction
            if fxr < fv(:,end)
                % Perform an outside contraction
                xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
                x(:) = xc; fxc = funfcn(x,varargin{:});
                func_evals = func_evals+1;
                
                if fxc <= fxr
                    v(:,end) = xc;
                    fv(:,end) = fxc;
                    how = 'contract outside';
                else
                    % perform a shrink
                    how = 'shrink';
                end
            else
                % Perform an inside contraction
                xcc = (1-psi)*xbar + psi*v(:,end);
                x(:) = xcc; fxcc = funfcn(x,varargin{:});
                func_evals = func_evals+1;
                
                if fxcc < fv(:,end)
                    v(:,end) = xcc;
                    fv(:,end) = fxcc;
                    how = 'contract inside';
                else
                    % perform a shrink
                    how = 'shrink';
                end
            end
            if strcmp(how,'shrink')
                for j=two2np1
                    v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1));
                    x(:) = v(:,j); fv(:,j) = funfcn(x,varargin{:});
                end
                func_evals = func_evals + n;
            end
        end
    end
    [fv,j] = sort(fv);
    v = v(:,j);
    itercount = itercount + 1;
    if prnt == 3
        fprintf(' %5.0f        %5.0f     %12.6g         %s\n', itercount, func_evals, fv(1), how)
    elseif prnt == 4
        disp(' ')
        disp(how)
        disp('v = ')
        disp(v)
        disp('fv = ')
        disp(fv)
        disp('func_evals = ')
        disp(func_evals)
    end
    % OutputFcn and PlotFcns call
    if haveoutputfcn || haveplotfcn
        [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...
            func_evals, how, fv(:,1),varargin{:});
        if stop  % Stop per user request.
            [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
            if  prnt > 0
                disp(output.message)
            end
            return;
        end
    end
end   % while

x(:) = v(:,1);
fval = fv(:,1);

output.iterations = itercount;
output.funcCount = func_evals;
output.algorithm = 'Nelder-Mead simplex direct search';

% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
    callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,'done',itercount, func_evals, how, fval, varargin{:});
end

if func_evals >= maxfun
    msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxFunctionEvals', sprintf('%f',fval)));
    if prnt > 0
        disp(' ')
        disp(msg)
    end
    exitflag = 0;
elseif itercount >= maxiter
    msg = getString(message('MATLAB:optimfun:fminsearch:ExitingMaxIterations', sprintf('%f',fval)));
    if prnt > 0
        disp(' ')
        disp(msg)
    end
    exitflag = 0;
else
    msg = ...
      getString(message('MATLAB:optimfun:fminsearch:OptimizationTerminatedXSatisfiesCriteria', ...
               sprintf('%e',tolx), sprintf('%e',tolf)));
    if prnt > 1
        disp(' ')
        disp(msg)
    end
    exitflag = 1;
end

output.message = msg;

%--------------------------------------------------------------------------
function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,state,iter,...
    numf,how,f,varargin)
% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the
% outputfcn/plotfcns.
%
% state - can have the values 'init','iter', or 'done'.

% For the 'done' state we do not check the value of 'stop' because the
% optimization is already done.
optimValues.iteration = iter;
optimValues.funccount = numf;
optimValues.fval = f;
optimValues.procedure = how;

xOutputfcn(:) = x;  % Set x to have user expected size
stop = false;
state = char(state);
% Call output functions
if ~isempty(outputfcn)
    switch state
        case {'iter','init'}
            stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:});
    end
end
% Call plot functions
if ~isempty(plotfcns)
    switch state
        case {'iter','init'}
            stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}) || stop;
        case 'done'
            callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:});
    end
end

%--------------------------------------------------------------------------
function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization
% is interrupted.

% Call plot function driver to finalize the plot function figure window. If
% no plot functions have been specified or the plot function figure no
% longer exists, this call just returns.
callAllOptimPlotFcns('cleanuponstopsignal');

x = xOutputfcn;
FVAL = optimValues.fval;
EXITFLAG = -1;
OUTPUT.iterations = optimValues.iteration;
OUTPUT.funcCount = optimValues.funccount;
OUTPUT.algorithm = 'Nelder-Mead simplex direct search';
OUTPUT.message = getString(message('MATLAB:optimfun:fminsearch:OptimizationTerminatedPrematurelyByUser'));

%--------------------------------------------------------------------------
function f = checkfun(x,userfcn,varargin)
% CHECKFUN checks for complex or NaN results from userfcn.

f = userfcn(x,varargin{:});
% Note: we do not check for Inf as FMINSEARCH handles it naturally.
if isnan(f)
    error('MATLAB:fminsearch:checkfun:NaNFval',...
        getString(message('MATLAB:optimfun:fminsearch:checkfun:NaNFval', localChar( userfcn ))));  
elseif ~isreal(f)
    error('MATLAB:fminsearch:checkfun:ComplexFval',...
        getString(message('MATLAB:optimfun:fminsearch:checkfun:ComplexFval', localChar( userfcn ))));  
end

%--------------------------------------------------------------------------
function strfcn = localChar(fcn)
% Convert the fcn to a character array for printing

if ischar(fcn)
    strfcn = fcn;
elseif isstring(fcn) || isa(fcn,'inline')
    strfcn = char(fcn);
elseif isa(fcn,'function_handle')
    strfcn = func2str(fcn);
else
    try
        strfcn = char(fcn);
    catch
        strfcn = getString(message('MATLAB:optimfun:fminsearch:NameNotPrintable'));
    end
end


 

子程序:

function [x,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = fminunc(FUN,x,options,varargin)
%FMINUNC finds a local minimum of a function of several variables.
%   X = FMINUNC(FUN,X0) starts at X0 and attempts to find a local minimizer
%   X of the function FUN. FUN accepts input X and returns a scalar
%   function value F evaluated at X. X0 can be a scalar, vector or matrix. 
%
%   X = FMINUNC(FUN,X0,OPTIONS) minimizes with the default optimization
%   parameters replaced by values in OPTIONS, an argument created with the
%   OPTIMOPTIONS function.  See OPTIMOPTIONS for details. Use the
%   SpecifyObjectiveGradient option to specify that FUN also returns a
%   second output argument G that is the partial derivatives of the
%   function df/dX, at the point X. Use the HessianFcn option to specify
%   that FUN also returns a third output argument H that is the 2nd partial
%   derivatives of the function (the Hessian) at the point X. The Hessian
%   is only used by the trust-region algorithm.
%
%   X = FMINUNC(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the function FUN in PROBLEM.objective, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'fminunc' in PROBLEM.solver. Use this syntax to solve at the 
%   command line a problem exported from OPTIMTOOL. 
%
%   [X,FVAL] = FMINUNC(FUN,X0,...) returns the value of the objective 
%   function FUN at the solution X.
%
%   [X,FVAL,EXITFLAG] = FMINUNC(FUN,X0,...) returns an EXITFLAG that
%   describes the exit condition. Possible values of EXITFLAG and the
%   corresponding exit conditions are listed below. See the documentation
%   for a complete description.
%
%     1  Magnitude of gradient small enough. 
%     2  Change in X too small.
%     3  Change in objective function too small.
%     5  Cannot decrease function along search direction.
%     0  Too many function evaluations or iterations.
%    -1  Stopped by output/plot function.
%    -3  Problem seems unbounded. 
%   
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINUNC(FUN,X0,...) returns a structure 
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the 
%   number of function evaluations in OUTPUT.funcCount, the algorithm used 
%   in OUTPUT.algorithm, the number of CG iterations (if used) in
%   OUTPUT.cgiterations, the first-order optimality (if used) in
%   OUTPUT.firstorderopt, and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,GRAD] = FMINUNC(FUN,X0,...) returns the value 
%   of the gradient of FUN at the solution X.
%
%   [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = FMINUNC(FUN,X0,...) returns the 
%   value of the Hessian of the objective function FUN at the solution X.
%
%   Examples
%     FUN can be specified using @:
%        X = fminunc(@myfun,2)
%
%   where myfun is a MATLAB function such as:
%
%       function F = myfun(x)
%       F = sin(x) + 3;
%
%     To minimize this function with the gradient provided, modify
%     the function myfun so the gradient is the second output argument:
%        function [f,g] = myfun(x)
%         f = sin(x) + 3;
%         g = cos(x);
%     and indicate the gradient value is available by creating options with
%     OPTIONS.SpecifyObjectiveGradient set to true (using OPTIMOPTIONS):
%        options = optimoptions('fminunc','SpecifyObjectiveGradient',true);
%        x = fminunc(@myfun,4,options);
%
%     FUN can also be an anonymous function:
%        x = fminunc(@(x) 5*x(1)^2 + x(2)^2,[5;1])
%
%   If FUN is parameterized, you can use anonymous functions to capture the
%   problem-dependent parameters. Suppose you want to minimize the 
%   objective given in the function myfun, which is parameterized by its 
%   second argument c. Here myfun is a MATLAB file function such as
%
%     function [f,g] = myfun(x,c)
%
%     f = c*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % function
%     g = [2*c*x(1) + 2*x(2)               % gradient
%          2*x(1) + 2*x(2)];
%
%   To optimize for a specific value of c, first assign the value to c. 
%   Then create a one-argument anonymous function that captures that value 
%   of c and calls myfun with two arguments. Finally, pass this anonymous 
%   function to FMINUNC:
%
%     c = 3;                              % define parameter first
%     options = optimoptions('fminunc','SpecifyObjectiveGradient',true); % indicate gradient is provided 
%     x = fminunc(@(x) myfun(x,c),[1;1],options)
%
%   See also OPTIMOPTIONS, FMINSEARCH, FMINBND, FMINCON, @, INLINE.

%   When options.Algorithm=='trust-region', the algorithm is a trust-region method.
%   When options.Algorithm=='quasi-newton', the algorithm is the BFGS Quasi-Newton 
%   method with a mixed quadratic and cubic line search procedure. 

%   Copyright 1990-2018 The MathWorks, Inc.
 
% ------------Initialization----------------
defaultopt = struct( ...
    'Algorithm', 'quasi-newton', ...
    'DerivativeCheck','off', ...   
    'Diagnostics','off', ...
    'DiffMaxChange',Inf, ...
    'DiffMinChange',0, ...
    'Display','final', ...
    'FinDiffRelStep', [], ...
    'FinDiffType','forward', ...
    'ProblemdefOptions', struct, ...
    'FunValCheck','off', ...
    'GradObj','off', ...
    'Hessian','off', ...
    'HessMult',[], ...
    'HessPattern','sparse(ones(numberOfVariables))', ...
    'HessUpdate','bfgs', ...
    'MaxFunEvals','100*numberOfVariables', ...
    'MaxIter',400, ...
    'MaxPCGIter','max(1,floor(numberOfVariables/2))', ...
    'ObjectiveLimit', -1e20, ...
    'OutputFcn',[], ...
    'PlotFcns',[], ...
    'PrecondBandWidth',0, ...
    'TolFun',1e-6, ...
    'TolFunValue',1e-6, ...    
    'TolPCG',0.1, ...
    'TolX',1e-6, ...
    'TypicalX','ones(numberOfVariables,1)', ...
    'UseParallel',false ... 
    ); 

% If just 'defaults' passed in, return the default options in X
if nargin == 1 && nargout <= 1 && strcmpi(FUN,'defaults')
   x = defaultopt;
   return
end

if nargin < 3 
    options = [];
end 

% Detect problem structure input
if nargin == 1
    if isa(FUN,'struct')
        [FUN,x,options] = separateOptimStruct(FUN);
    else % Single input and non-structure.
        error(message('optim:fminunc:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'fminunc');

% Set options to default if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

% Check to see if the trust-region and large scale options conflict. If so,
% we'll error and ask the user to fix up the options.
if (isfield(options, 'Algorithm') && strcmp(options.Algorithm, 'trust-region')) && ...
        (~isfield(options, 'GradObj') || strcmp(options.GradObj, 'off'))
    [linkTag,endLinkTag] = linkToAlgDefaultChangeCsh('fminunc_error_trr_no_grad'); % links to context sensitive help
    transitionMsgID =                     'optim:fminunc:TrrOptionsConflict';
    transitionMsgTxt = getString(message('optim:fminunc:TrrOptionsConflict',linkTag,endLinkTag));
    error(transitionMsgID,transitionMsgTxt);
end

if nargin == 0 
  error(message('optim:fminunc:NotEnoughInputs'))
end

if nargout > 5
  flags.computeHessian = true;
else
  flags.computeHessian = false;    
end

% Check for non-double inputs
msg = isoptimargdbl('FMINUNC', {'X0'}, x);
if ~isempty(msg)
    error('optim:fminunc:NonDoubleInput',msg);
end

% Check for complex X0
if ~isreal(x)
    error('optim:fminunc:ComplexX0', ...
        getString(message('optimlib:commonMsgs:ComplexX0','Fminunc')));
end

XOUT=x(:);
sizes.nVar = length(XOUT);
sizes.mNonlinIneq = 0;
sizes.mNonlinEq = 0;
sizes.xShape = size(x);

medium = 'quasi-newton'; 
large = 'trust-region'; 

display = optimget(options,'Display',defaultopt,'fast',allDefaultOpts);
flags.detailedExitMsg = contains(display,'detailed');
switch display
case {'off','none'}
   flags.verbosity = 0;
case {'notify','notify-detailed'}
   flags.verbosity = 1;  
case {'final','final-detailed'}
   flags.verbosity = 2;   
case {'iter','iter-detailed'}
   flags.verbosity = 3;
case 'testing'
   flags.verbosity = Inf;
otherwise
   flags.verbosity = 2;
end
diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts),'on');

% Check options needed for Derivative Check
options.GradObj = optimget(options,'GradObj',defaultopt,'fast',allDefaultOpts);
options.GradConstr = 'off';
options.DiffMinChange = optimget(options,'DiffMinChange',defaultopt,'fast',allDefaultOpts);
options.DiffMaxChange = optimget(options,'DiffMaxChange',defaultopt,'fast',allDefaultOpts);

% Read in and error check option TypicalX
[typicalx,ME] = getNumericOrStringFieldValue('TypicalX','ones(numberOfVariables,1)', ...
    ones(sizes.nVar,1),'a numeric value',options,defaultopt);
if ~isempty(ME)
    throw(ME)
end
checkoptionsize('TypicalX', size(typicalx), sizes.nVar);
options.TypicalX = typicalx;
options.FinDiffType = optimget(options,'FinDiffType',defaultopt,'fast',allDefaultOpts); 
options = validateFinDiffRelStep(sizes.nVar,options,defaultopt);
options.UseParallel = optimget(options,'UseParallel',defaultopt,'fast',allDefaultOpts); 

DerivativeCheck = strcmpi(optimget(options,'DerivativeCheck',defaultopt,'fast',allDefaultOpts),'on');
gradflag =  strcmp(options.GradObj,'on');
Hessian = optimget(options,'Hessian',defaultopt,'fast',allDefaultOpts);

% line_search: 0 means trust-region, 1 means line-search ('quasi-newton')
line_search = strcmp(optimget(options,'Algorithm',defaultopt,'fast',allDefaultOpts), 'quasi-newton');

if ( strcmpi(Hessian,'on') || strcmpi(Hessian,'user-supplied') )
    hessflag = true;
elseif strcmpi(Hessian,'off') || strcmpi(Hessian,'fin-diff-grads')
    hessflag = false;
else
    % If calling trust-region algorithm with an unavailable Hessian option value,
    % issue informative error message
    if ~line_search
        error(message('optim:fminunc:BadTRReflectHessianValue'))
    end
end

funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast',allDefaultOpts),'on');
flags.computeLambda = 0;

% Convert to inline function as needed
if ~isempty(FUN)  % will detect empty string, empty matrix, empty cell array
   funfcn = optimfcnchk(FUN,'fminunc',length(varargin),funValCheck,gradflag,hessflag);
else
   error(message('optim:fminunc:InvalidFUN'))
end

% For parallel finite difference (if needed) we need to send the function
% handles now to the workers. This avoids sending the function handles in
% every iteration of the solver. The output from 'setOptimFcnHandleOnWorkers'
% is a onCleanup object that will perform cleanup task on the workers.
UseParallel = optimget(options,'UseParallel',defaultopt,'fast',allDefaultOpts);
ProblemdefOptions = optimget(options, 'ProblemdefOptions',defaultopt,'fast',allDefaultOpts);
FromSolve = false;
if ~isempty(ProblemdefOptions) && isfield(ProblemdefOptions, 'FromSolve')
    FromSolve = ProblemdefOptions.FromSolve;
end
cleanupObj = setOptimFcnHandleOnWorkers(UseParallel,funfcn,{''},FromSolve);

GRAD = zeros(sizes.nVar,1);
HESS = [];

switch funfcn{1}
case 'fun'
    try
        f = feval(funfcn{3},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:ObjectiveError', ...
            getString(message('optim:fminunc:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
case 'fungrad'
    try
        [f,GRAD] = feval(funfcn{3},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:ObjectiveError', ...
            getString(message('optim:fminunc:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
case 'fungradhess'
    try
      [f,GRAD,HESS] = feval(funfcn{3},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:ObjectiveError', ...
            getString(message('optim:fminunc:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
case 'fun_then_grad'
    try
        f = feval(funfcn{3},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:ObjectiveError', ...
            getString(message('optim:fminunc:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
    try
        GRAD = feval(funfcn{4},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:GradientError', ...
            getString(message('optim:fminunc:GradientError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
case 'fun_then_grad_then_hess'
    try
     f = feval(funfcn{3},x,varargin{:}); 
      catch userFcn_ME
        optim_ME = MException('optim:fminunc:ObjectiveError', ...
            getString(message('optim:fminunc:ObjectiveError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
     try
   GRAD = feval(funfcn{4},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:GradientError', ...
            getString(message('optim:fminunc:GradientError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
   
   try
   HESS = feval(funfcn{5},x,varargin{:});
    catch userFcn_ME
        optim_ME = MException('optim:fminunc:HessianError', ...
            getString(message('optim:fminunc:HessianError')));
        userFcn_ME = addCause(userFcn_ME,optim_ME);
        rethrow(userFcn_ME)
    end
otherwise
   error(message('optim:fminunc:UndefCalltype'));
end

% Check for non-double data typed values returned by user functions 
if ~isempty( isoptimargdbl('FMINUNC', {'f','GRAD','HESS'}, f, GRAD, HESS) )
    error('optim:fminunc:NonDoubleFunVal',getString(message('optimlib:commonMsgs:NonDoubleFunVal','FMINUNC')));
end

% Check that the objective value is a scalar
if numel(f) ~= 1
   error(message('optim:fminunc:NonScalarObj'))
end

% Check that the objective gradient is the right size
GRAD = GRAD(:);
if numel(GRAD) ~= sizes.nVar
   error('optim:fminunc:InvalidSizeOfGradient', ...
       getString(message('optimlib:commonMsgs:InvalidSizeOfGradient',sizes.nVar)));
end

% Determine algorithm
% If line-search and no hessian,  then call line-search algorithm
if line_search  && ...
      (~strcmpi(funfcn{1}, 'fun_then_grad_then_hess') && ~strcmpi(funfcn{1}, 'fungradhess'))
  output.algorithm = medium; 
    
  % Line-search and Hessian -- no can do, so do line-search after warning: ignoring hessian.   
elseif line_search && ...
        (strcmpi(funfcn{1}, 'fun_then_grad_then_hess') || strcmpi(funfcn{1}, 'fungradhess'))
    warning(message('optim:fminunc:HessIgnored'))
    if strcmpi(funfcn{1}, 'fun_then_grad_then_hess')
        funfcn{1} = 'fun_then_grad';
    elseif strcmpi(funfcn{1}, 'fungradhess')
        funfcn{1} = 'fungrad';
    end
    output.algorithm = medium;
    % If not line-search (trust-region) and Hessian, call trust-region   
elseif ~line_search && ...
        (strcmpi(funfcn{1}, 'fun_then_grad_then_hess') || strcmpi(funfcn{1}, 'fungradhess'))
   l=[]; u=[]; Hstr=[];
   output.algorithm = large; 
% If not line search (trust-region) and no Hessian but grad, use sparse finite-differencing.
elseif ~line_search && ...
      (strcmpi(funfcn{1}, 'fun_then_grad') || strcmpi(funfcn{1}, 'fungrad'))
   n = length(XOUT); 
   Hstr = optimget(options,'HessPattern',defaultopt,'fast',allDefaultOpts);
   if ischar(Hstr) 
      if strcmpi(Hstr,'sparse(ones(numberofvariables))')
      % Put this code separate as it might generate OUT OF MEMORY error
         Hstr = sparse(ones(n));
      else
         error(message('optim:fminunc:InvalidHessPattern'))
      end
   end
   checkoptionsize('HessPattern', size(Hstr), n);
   l=[]; u=[];   
   output.algorithm = large;   
   % Trust region but no grad, no can do; use line-search    
elseif ~line_search
    output.algorithm = medium;
else
   error(message('optim:fminunc:InvalidProblem'))   
end


% Set up confcn for diagnostics and derivative check
confcn = {''};
if diagnostics
   % Do diagnostics on information so far
   constflag = false; gradconstflag = false; 
   non_eq=0;non_ineq=0;lin_eq=0;lin_ineq=0;
   diagnose('fminunc',output,gradflag,hessflag,constflag,gradconstflag,...
      XOUT,non_eq,non_ineq,lin_eq,lin_ineq,[],[],funfcn,confcn);
   
end

% Create default structure of flags for finitedifferences:
% This structure will (temporarily) ignore some of the features that are
% algorithm-specific (e.g. scaling and fault-tolerance) and can be turned
% on later for the main algorithm.
finDiffFlags.fwdFinDiff = strcmpi(options.FinDiffType,'forward');
finDiffFlags.scaleObjConstr = false; % No scaling for now
finDiffFlags.chkFunEval = false;     % No fault-tolerance yet
finDiffFlags.chkComplexObj = false;  % No need to check for complex values
finDiffFlags.isGrad = true;          % Scalar objective
finDiffFlags.hasLBs = false(sizes.nVar,1); % No lower bounds
finDiffFlags.hasUBs = false(sizes.nVar,1); % No lower bounds

% Check derivatives
if DerivativeCheck && gradflag           % user wants to check derivatives
    validateFirstDerivatives(funfcn,confcn,XOUT,-Inf(sizes.nVar,1), ...
        Inf(sizes.nVar,1),options,finDiffFlags,sizes,varargin{:});
end

% Flag to determine whether to look up the exit msg.
flags.makeExitMsg = logical(flags.verbosity) || nargout > 3;

% If line-search and no hessian,  then call line-search algorithm
if strcmpi(output.algorithm, medium)
   [x,FVAL,GRAD,HESSIAN,EXITFLAG,OUTPUT] = fminusub(funfcn,x, ...
      options,defaultopt,f,GRAD,sizes,flags,finDiffFlags,varargin{:});
elseif strcmpi(output.algorithm, large)
    % Fminunc does not support output.constrviolation 
    computeConstrViolForOutput = false;
   [x,FVAL,~,EXITFLAG,OUTPUT,GRAD,HESSIAN] = sfminbx(funfcn,x,l,u, ...
      flags.verbosity,options,defaultopt,flags.computeLambda,f,GRAD,HESS,Hstr, ...
      flags.detailedExitMsg,computeConstrViolForOutput,flags.makeExitMsg,varargin{:});
   OUTPUT.algorithm = large; % override sfminbx output: not using the reflective 
                             % part of the method   
end

% Force a cleanup of the handle object. Sometimes, MATLAB may
% delay the cleanup but we want to be sure it is cleaned up.
delete(cleanupObj);

 

3.运行结果

 

 

9ed5224129504fa88722304a684fbdbb.png

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55025.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Golang 接口自动化08】使用标准库httptest完成HTTP请求的Mock测试

目录 前言 http包的HandleFunc函数 http.Request/http.ResponseWriter httptest 定义被测接口 测试代码 测试执行 总结 资料获取方法 前言 Mock是一个做自动化测试永远绕不过去的话题。本文主要介绍使用标准库net/http/httptest完成HTTP请求的Mock的测试方法。 可能有…

113、单例Bean是单例模式吗?

单例Bean是单例模式吗? 通常来说,单例模式是指在一个JVM中,一个类只能构造出来一个对象,有很多方法来实现单例模式,比如懒汉模式,但是我们通常讲的单例模式有一个前提条件就是规定在一个JVM中,那如果要在两个JVM中保证单例呢?那可能就要用分布式锁这些技术,这里的重点…

性能测试基础知识(三)性能指标

性能测试基础知识&#xff08;三&#xff09;性能指标 前言一、时间特性1、响应时间2、并发数3、吞吐量&#xff08;TPS&#xff09; 二、资源特性1、CPU利用率2、内存利用率3、I/O利用率4、网络带宽使用率5、网络传输速率&#xff08;MB/s&#xff09; 三、实例场景 前言 性能…

面试总结(三)

1.进程和线程的区别 根本区别&#xff1a;进程是操作系统分配资源的最小单位&#xff1b;线程是CPU调度的最小单位所属关系&#xff1a;一个进程包含了多个线程&#xff0c;至少拥有一个主线程&#xff1b;线程所属于进程开销不同&#xff1a;进程的创建&#xff0c;销毁&…

LViT:语言与视觉Transformer在医学图像分割

论文链接&#xff1a;https://arxiv.org/abs/2206.14718 代码链接&#xff1a;GitHub - HUANGLIZI/LViT: This repo is the official implementation of "LViT: Language meets Vision Transformer in Medical Image Segmentation" (IEEE Transactions on Medical I…

华为数通HCIP-IGMP(网络组管理协议)

IGMP&#xff08;网络组管理协议&#xff09; 作用&#xff1a;维护、管理最后一跳路由器以及组播接收者之间的关系&#xff1b; 应用&#xff1a;最后一跳路由器以及组播接收者之间&#xff1b; 原理&#xff1a;当组播接收者需要接收某个组别的流量时&#xff0c;会向最后…

SpringCloud Gateway 在微服务架构下的最佳实践

作者&#xff1a;徐靖峰&#xff08;岛风&#xff09; 前言 本文整理自云原生技术实践营广州站 Meetup 的分享&#xff0c;其中的经验来自于我们团队开发的阿里云 CSB 2.0 这款产品&#xff0c;其基于开源 SpringCloud Gateway 开发&#xff0c;在完全兼容开源用法的前提下&a…

数据结构-链表

&#x1f5e1;CSDN主页&#xff1a;d1ff1cult.&#x1f5e1; &#x1f5e1;代码云仓库&#xff1a;d1ff1cult.&#x1f5e1; &#x1f5e1;文章栏目&#xff1a;数据结构专栏&#x1f5e1; 目录 目录 代码总览&#xff1a; 接口slist.h&#xff1a; slist.c: 1.什么是链表 1.1链…

消息触达平台 - 基础理论

目录 消息触达平台 背景 业务流程 触达配置 服务处理 表现展示 效果统计 触达信息结构 对象 内容 渠道 场景 机制 消息触达平台 背景 在产品生命周期的不同阶段&#xff0c;用户触达体系可以用来对不同用户群体进行定制化运营。结合咱们的日常场景&#xff0c;公司的运营同学或…

【前端知识】React 基础巩固(四十一)——手动路由跳转、参数传递及路由配置

React 基础巩固(四十一)——手动路由跳转、参数传递及路由配置 一、实现手动跳转路由 利用 useNavigate 封装一个 withRouter&#xff08;hoc/with_router.js&#xff09; import { useNavigate } from "react-router-dom"; // 封装一个高阶组件 function withRou…

vue + element UI Table 表格 利用插槽是 最后一行 操作 的边框线 不显示

在屏幕比例100%时 el-table添加border属性 使用作用域插槽 会不显示某侧的边框线&#xff0c;屏幕比例缩小或放大都展示 // 修复列的 边框线消失的bug thead th:not(.is-hidden):last-child {right:-1px;// 或者//border-left: 1px solid #ebeef5; } .el-table__row{td:not(.i…

常用的CSS渐变样式

边框渐变 方案1&#xff1a; 边框渐变( 支持圆角) width: 726px;height: 144px;border-radius: 24px;border: 5px solid transparent;background-clip: padding-box, border-box; background-origin: padding-box, border-box; background-image: linear-gradient(to right, #f…

RabbitMQ 教程 | 第4章 RabbitMQ 进阶

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

基于多线程实现服务器并发

看大丙老师的B站视频总结的笔记19-基于多线程实现服务器并发分析_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1F64y1U7A2/?p19&spm_id_frompageDriver&vd_sourcea934d7fc6f47698a29dac90a922ba5a3 思路&#xff1a;首先accept是有一个线程的&#xff0c;另外…

【C++】 哈希

一、哈希的概念及其性质 1.哈希概念 在顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没有对应的关系&#xff0c;因此在查找一个元素时&#xff0c;必须要经过关键码的多次比较。比如顺序表需要从第一个元素依次向后进行查找&#xff0c;顺序查找时间复杂度为…

从零开始学Docker(二):启动第一个Docker容器

宿主机环境&#xff1a;RockyLinux 9 这个章节不小心搞成命令学习了&#xff0c;后面在整理成原理吧 Docker生命周期 拉取并启动Nginx容器 # 查找镜像 例如&#xff1a;nginx [root192 ~]# docker search nginx 我们可以看到&#xff0c;第一个时官方认证构建的nginx # 拉…

Java源码规则引擎:jvs-rules决策流的自定义权限控制

规则引擎用于管理和执行业务规则。它提供了一个中央化的机制来定义、管理和执行业务规则&#xff0c;以便根据特定条件自动化决策和行为。规则引擎的核心概念是规则。规则由条件和动作组成。条件定义了规则适用的特定情况或规则触发的条件&#xff0c;而动作定义了规则满足时要…

深度学习之用PyTorch实现线性回归

代码 # 调用库 import torch# 数据准备 x_data torch.Tensor([[1.0], [2.0], [3.0]]) # 训练集输入值 y_data torch.Tensor([[2.0], [4.0], [6.0]]) # 训练集输出值# 定义线性回归模型 class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self)._…

时间复杂度为O(nlogn)的两种排序算法

1.归并排序 归并排序的核心思想&#xff1a;如果要排序一个数组&#xff0c;我们先把数组从中间分成前后两部分&#xff0c;然后对前后两部分分别排序&#xff0c;再将排好序的两部分合并在一起&#xff0c;这样整个数组就都有序了。 归并排序使用的就是分治思想。分治&#x…