Python --- 在python中安装NumPy,SciPy和Matplotlib(Windows平台)

在python中安装NumPy,SciPy和Matplotlib(Windows平台)

NumPy

        NumPy是Python的一个最常用最基本的扩展程序库之一,主要用于矩阵运算或数组计算。很多其他的python库都要依赖于NumPy才能跑。

NumPy的发展史:

Matrix-sig

        1995年,特殊兴趣小组(Special Interest Group,SIG)Matrix-sig成立,其目的是设计一个数组计算包。Matrix-sig的成员中有Python的发明人吉多 范罗苏姆(Guido van Rossum),他扩展了Python的语法(特别是索引语法),使数组计算更容易。

Numeric

        矩阵计算包由Jim Fulton实现,并由Jim Hugunin推广,被称为Numeric (也称Numerical Python extensions或 NumPy)。现已弃用。其中,Jim Hugunin 是麻省理工学院 (MIT) 的研究生,[8]: 10  于 1997 年加入国家研究计划公司 (CNRI),从事 JPython 工作。

Numarray

        Numarray是作为Numeric的替代品被开发出来的,与 Numeric 一样,它现在也已被弃用。Numarray 对于大型数组的操作速度更快,但在小型数组上的操作速度比 Numeric 慢,因此有一段时间这两个包被并行使用于不同情况。Numeric的最后一个版本(v24.2)于2005年11月11日发布;Numarray的最后一个版本(v1.5.2)于2006年8月24日发布。

曾经有人希望将Numeric纳入Python标准库,但吉多·范罗苏姆认为,在当时的情况下,代码难以维护。

NumPy

2005年初,NumPy的开发者Travis Oliphant希望社区的不同数组包可以统一。他将Numarray的功能移植到Numeric上,并于2006将结果作为NumPy 1.0发布。这个新项目是SciPy的一部分。为了避免在只需数组计算的情况下安装庞大的SciPy包,新包以NumPy的名义被分离出来。2011年,NumPy的1.5.0版本加入了对Python 3的支持。由此看来,NumPy确实是更专注于矩阵运算。

安装NumPy:

安装官网的说明如法炮制,复制粘贴:

pip install numpy

大概了你会发现,速度非常慢。。。甚至出现time out的错误。 

 然后,我查询了一下“资料”,选择了第一种用法,成功,而且下载速度非常快。

复制粘贴,over: 

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy

NumPy使用手册:

NumPy user guide — NumPy v1.26 Manual

By the way,顺便说一句,因为安装这个东西,我还顺带发现了一个宝藏网站:
https://mirrors.tuna.tsinghua.edu.cn/

 这个里面什么东西都有,得。。。。。

后面我们安装其他python工具包/扩展库得时候,还得用到这个镜像。


SciPy

        SciPy是一个需要依赖于NumPy的较为全面和完整的Python科学计算库(毕竟他依赖于Numeric的前身Numeric)。SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。

SciPy的发展史:

        在1990年代,Python引入了用于数值计算的阵列类型Numeric(这个包最终被Travis Oliphant编写的NumPy取代);此后,随着被用于不同科学领域的扩展模块的数量越来越多,人们对一个能够囊括尽可能多的一站式科学技术库的渴求也愈发强烈。2001年,Travis Oliphant、Eric Jones和Pearu Peterson合并了他们编写的代码,并将这个合并后的包命名为SciPy。

安装SciPy: 

        和NumPy的安装一样,根据官方的说明,可以直接在Python中输入如下命令,系统就会自行下载并安装。

 输入如下命令进行安装,结果碰到了和安装NumPy一样的问题,下载速度非常慢:

python -m pip install scipy

如法炮制的使用清华大学的镜像: 

python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy

SciPy使用手册:

 SciPy documentation — SciPy v1.13.0 Manual


Matplotlib

 

 

安装Matplotlib:

Matplotlib使用手册:


 (全文完)

作者 --- 松下J27 

参考文献(鸣谢):

1,https://en.wikipedia.org/wiki/Guido_van_Rossum

2,https://zh.wikipedia.org/wiki/NumPy 

3,https://zh.wikipedia.org/wiki/Matplotlib

4,https://zh.wikipedia.org/wiki/SciPy

5,NumPy user guide — NumPy v1.26 Manual

6,SciPy -

7,Matplotlib — Visualization with Python

8,

9,

(配图与本文无关)

版权声明:文中的部分图片,文字或者其他素材,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/549997.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ - Spring boot 整合 RabbitMQ

一、RabbitMQ 1、RabbitMQ 使用场景 1.1、服务解耦 假设有这样一个场景, 服务A产生数据, 而服务B,C,D需要这些数据, 那么我们可以在A服务中直接调用B,C,D服务,把数据传递到下游服务即可 但是,随着我们的应用规模不断扩大,会有更多的服务需要A的数据,如果有几十甚至几百个下…

系统调优助手,PyTorch Profiler TensorBoard 插件教程

0x1. 前言 使用PyTorch Profiler进行性能分析已经一段时间了,毕竟是PyTorch提供的原生profile工具,个人感觉做系统性能分析时感觉比Nsys更方便一些,并且画的图也比较直观。这里翻译一下PyTorch Profiler TensorBoard Plugin的教程并分享一些…

SEO之搜索引擎的工作原理(三)

初创企业需要建站的朋友看这篇文章,谢谢支持:我给不会敲代码又想搭建网站的人建议 (接上一篇。。。) 排名 经过搜索引擎蜘蛛抓取页面,索引程序计算得到倒排索引后,搜索引擎就准备好可以随时处理用户搜索了…

基于Echarts的超市销售可视化分析系统(数据+程序+论文

本论文旨在研究Python技术和ECharts可视化技术在超市销售数据分析系统中的应用。本系统通过对超市销售数据进行分析和可视化展示,帮助决策层更好地了解销售情况和趋势,进而做出更有针对性的决策。本系统主要包括数据处理、数据可视化和系统测试三个模块。…

通义千问:官方开放API开发基础

目录 一、模型介绍 1.1主要模型 1.2 计费单价 二、前置条件 2.1 开通DashScope并创建API-KEY 2.2 设置API-KEY 三、基于DashScope SDK开发 3.1 Maven引入SDK 3.2 代码实现 3.3 运行代码 一、模型介绍 通义千问是由阿里云自主研发的大语言模型,用于理解和分…

JVM虚拟机(九)如何开启 GC 日志

目录 一、引言二、开启 GC 日志三、解析 GC 日志四、优化建议 一、引言 在 Java 应用程序的运行过程中,垃圾收集(Garbage Collection,简称 GC)是一个非常重要的环节。GC 负责自动管理内存,回收不再使用的对象所占用的…

贵阳市人民政府副市长刘岚调研珈和科技

4月9日,贵阳市人民政府副市长、党组成员刘岚一行到珈和科技走访调研,珈和科技总经理冷伟热情接待了考察团,就企业算力需求与合作,特色产业园区建设,科技成果转化落地等方面进行深入交流。 贵阳市教育局局长李波&#…

智能商品计划系统如何提升鞋服零售品牌的竞争力

国内鞋服零售企业经过多年的发展,已经形成了众多知名品牌,然而近年来一些企业频频受到库存问题的困扰,这一问题不仅影响了品牌商自身,也给长期合作的经销商带来了困扰。订货会制度在初期曾经有效地解决了盲目生产的问题&#xff0…

Vue加载glb / gltf模型(如何在vue中使用Three.js,vue使用threejs加载glb模型)

简介:Three.js 是一个用于在 Web 上创建和显示 3D 图形的 JavaScript 库。它提供了丰富的功能和灵活的 API,使开发者可以轻松地在网页中创建各种 3D 场景、模型和动画效果。可以用来展示产品模型、建立交互式场景、游戏开发、数据可视化、教育和培训等等…

RISC-V微架构验证

对于RISC-V处理器因其灵活性和可扩展性而受到广泛关注,但如果没有高效验证策略,错误的设计实现可能会影响RISC-V的继续推广。 在RISC-V出现之前,对于大多数半导体公司来说,处理器验证几乎成为一门屠龙之技。专业知识被浓缩到少数几…

基于afx透明视频的视觉增强前端方案

作者 | 青玉 导读 本文介绍了增长前端团队自研的Webview框架下透明视频视觉增强方案,该方案在保证对视觉进行高度还原的同时可投入更少的开发成本,还能获得更优的前端性能表现。文章首先分析了市面上动画方案的优缺点,然后详细介绍了透明视频…

stm32实现hid鼠标

启动CubelMX 选择芯片(直接输入stm32f103zet6) 设置时钟 如下图 usb设置 配置usb设备 调试端口设置 配置时钟 项目输出设置 打开工程(后记:此工程含有中文不能编译通过) 配置项目 配置调试器 编译无法通过 删除路径中的中文,以及…

如何将Oracle 中的部分不兼容对象迁移到 OceanBase

本文总结分析了 Oracle 迁移至 OceanBase 时,在出现三种不兼容对象的情况时的处理策略以及迁移前的预检方式,通过提前发现并处理这些问题,可以有效规避迁移过程中的报错风险。 作者:余振兴,爱可生 DBA 团队成员&#x…

盲人专用软件定制开发:突破出行壁垒,点亮生活之路

身为一名资深记者,我始终关注着各类社会群体面临的挑战与应对策略。今天,我将目光投向了一个特殊群体——盲人,以及一款旨在破解他们独立出行难题的盲人专用软件。这款应用叫做蝙蝠避障,它通过定制开发,以先进的技术手…

Achronix FPGA增加对Bluespec提供的基于Linux的RISC-V软处理器的支持,以实现可扩展数据处理

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC 2024年4月——高性能FPGA芯片和嵌入式FPGA(eFPGA)硅知识产权(IP)领域的领先企业Achronix半导体公司,以及RISC-V工具和IP领域的行业领导者Blues…

PySpark预计算ClickHouse Bitmap实践

1. 背景 ClickHouse全称是Click Stream,Data WareHouse,是一款高性能的OLAP数据库,既使用了ROLAP模型,又拥有着比肩MOLAP的性能。我们可以用ClickHouse用来做分析平台快速出数。其中的bitmap结构方便我们对人群进行交并。Bitmap位…

0基础如何入门编程?

0基础如何进入IT行业 ? 前言 简介:对于没有任何相关背景知识的人来说,如何才能成功进入IT行业?是否有一些特定的方法或技巧可以帮助他们实现这一目标? 主要方法有如下几点建议提供给宝子们 目录 免费视频网课学习…

记录一下hive跑spark的insert,update语句报类找不到的问题

我hive能正常启动,建表没问题,我建了一个student表,没问题,但执行了下面一条insert语句后报如下错误: hive (default)> insert into table student values(1,abc); Query ID atguigu_20240417184003_f9d459d7-199…

【HCIP学习】OSPF协议基础

一、OSPF基础 1、技术背景(RIP中存在的问题) RIP中存在最大跳数为15的限制,不能适应大规模组网 周期性发送全部路由信息,占用大量的带宽资源 路由收敛速度慢 以跳数作为度量值 存在路由环路可能性 每隔30秒更新 2、OSPF协议…

十大排序——11.十大排序的比较汇总及Java中自带的排序算法

这篇文章对排序算法进行一个汇总比较! 目录 0.十大排序汇总 0.1概述 0.2比较和非比较的区别 0.3基本术语 0.4排序算法的复杂度及稳定性 1.冒泡排序 算法简介 动图演示 代码演示 应用场景 算法分析 2.快速排序 算法简介 动图演示 代码演示 应用场景…