开源模型应用落地-LangChain试炼-CPU调用QWen1.5(一)

 一、前言

    尽管现在的大语言模型已经非常强大,可以解决许多问题,但在处理复杂情况时,仍然需要进行多个步骤或整合不同的流程才能达到最终的目标。然而,现在可以利用langchain来使得模型的应用变得更加直接和简单。

    通过langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。langchain会自动将任务分解为多个子任务,并将它们传递给适合的语言模型进行处理。


二、术语

2.1.LangChain

    是一个全方位的、基于大语言模型这种预测能力的应用开发工具。LangChain的预构建链功能,就像乐高积木一样,无论你是新手还是经验丰富的开发者,都可以选择适合自己的部分快速构建项目。对于希望进行更深入工作的开发者,LangChain 提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

    LangChain本质上就是对各种大模型提供的API的套壳,是为了方便我们使用这些 API,搭建起来的一些框架、模块和接口。

    LangChain的主要特性:
        1.可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等
        2.允许语言模型与其环境交互
        3.封装了Model I/O(输入/输出)、Retrieval(检索器)、Memory(记忆)、Agents(决策和调度)等核心组件
        4.可以使用链的方式组装这些组件,以便最好地完成特定用例。
        5.围绕以上设计原则,LangChain解决了现在开发人工智能应用的一些切实痛点。

2.2.Hugging Face

    是一个知名的开源社区和平台,专注于自然语言处理(NLP)技术和人工智能模型的开发和共享。该社区致力于提供易于使用的工具和资源,帮助研究人员、开发者和数据科学家在NLP领域进行创新和应用。

    Hugging Face最著名的贡献是其开源软件库,其中包括了许多流行的NLP模型的实现和预训练模型的集合,如BERT、GPT、RoBERTa等。这些模型在各种NLP任务,如文本分类、命名实体识别、情感分析等方面取得了很好的表现,并被广泛应用于学术界和工业界。

2.3.Transformers

    Hugging Face的Transformer是一个流行的开源Python库,用于自然语言处理(NLP)任务和模型开发。它提供了一系列易于使用的API和工具,用于加载、训练和部署各种预训练的NLP模型,如BERT、GPT、RoBERTa等。


三、前提条件

3.1.安装虚拟环境

conda create --name langchain python=3.10
conda activate langchain
conda install pytorch
pip install langchain accelerate

3.2.下载QWen1.5模型

huggingface:

https://huggingface.co/Qwen/Qwen1.5-7B-Chat/tree/main

ModelScope:

git clone https://www.modelscope.cn/qwen/Qwen1.5-7B-Chat.git

PS:

1. 根据实际情况选择不同规格的模型


四、技术实现

4.1.方式一

# -*-  coding = utf-8 -*-
import warnings

from langchain import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.llms import HuggingFacePipeline

warnings.filterwarnings("ignore")

model_path ="/data/model/qwen1.5-7b-chat"

local_llm = HuggingFacePipeline.from_model_id(
    model_id=model_path,
    task="text-generation",
    model_kwargs={"trust_remote_code": True},
    pipeline_kwargs={"max_new_tokens": 8192,"top_p":0.9, "temperature":0.45,"repetition_penalty":1.1, "do_sample":True},
)

template = """Question: {question}

Answer: Let's think step by step."""

prompt = PromptTemplate.from_template(template)

chain = LLMChain(prompt=prompt, llm=local_llm)
question = "我家在广州,很好玩哦,你能介绍一些我家的特色景点吗?"
print(chain.run(question))


调用结果:

4.2.方式二

# -*-  coding = utf-8 -*-
import warnings

from langchain import PromptTemplate
from langchain.llms import HuggingFacePipeline

warnings.filterwarnings("ignore")

model_path ="/data/model/qwen1.5-7b-chat"

local_llm = HuggingFacePipeline.from_model_id(
    model_id=model_path,
    task="text-generation",
    model_kwargs={"trust_remote_code": True},
    pipeline_kwargs={"max_new_tokens": 8192,"top_p":0.9, "temperature":0.45,"repetition_penalty":1.1, "do_sample":True},
)

template = """Question: {question}

Answer: Let's think step by step."""

prompt = PromptTemplate.from_template(template)

chain = prompt | local_llm
question = "我家在广州,很好玩哦,你能介绍一些我家的特色景点吗?"
print(chain.invoke({"question": question}))

调用结果:


五、附带说明

5.1. ValueError: Input length of input_ids is 20, but `max_length` is set to 20. This can lead to unexpected behavior. You should consider increasing `max_length` or, better yet, setting `max_new_tokens`.

配置max_new_tokens

5.2. 使用pipline模型的加载方式

参见huggingface_pipeline.py文件,跟往常的模型加载方式一致

5.3. 模型加载很慢

原因:当前示例使用CPU加载模型及推理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/548634.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是T型槽铸铁平板中内应力——河北北重厂家

T型槽铸铁平板中的内应力指的是平板内部受到的内部力,包括拉应力和剪应力。在T型槽铸铁平板使用过程中,由于自身重量、外力加载等原因,会产生内部应力。这些内应力是平板内部各部分之间的相互作用力,使得平板各部分受到不同的拉伸…

C++ 为什么不能在构造函数中调用虚函数

最近在Clion编辑器中看到构造函数中调用虚函数提示&#xff1a; Do not invoke virtual member functions from constructor 这里记录一下为什么不能在构造函数中调用虚函数。 #include <iostream> #include <string>using namespace std;class BaseClass {publi…

大模型时代:普通人该如何获利?

随着科技的飞速发展&#xff0c;我们正处在一个大模型的时代。所谓大模型&#xff0c;就是指那些拥有数十亿、甚至千亿参数的深度学习模型。这些大模型的出现&#xff0c;不仅推动了人工智能技术的进步&#xff0c;也为普通人创造了众多的获利机会。那么&#xff0c;在这个大模…

【Java开发指南 | 第六篇】Java成员变量(实例变量)、 类变量(静态变量)

读者可订阅专栏&#xff1a;Java开发指南 |【CSDN秋说】 文章目录 成员变量&#xff08;实例变量&#xff09;类变量&#xff08;静态变量&#xff09;定义方式静态变量的使用场景 成员变量&#xff08;实例变量&#xff09; 成员变量声明在一个类中&#xff0c;但在方法、构造…

GAMS104 现代游戏引擎 2

渲染的难点可以分为一下三部分&#xff1a;如何计算入射光线、如何考虑材质以及如何实现全局光照。 渲染的难点之一在于阴影&#xff0c;或者说是光的可见性。如何做出合适的阴影效果远比想象中要难得多&#xff0c;在实践中往往需要通过大量的技巧才能实现符合人认知的阴影效…

AI数字人对话之RealChar框架源码解读

零.功能介绍 与虚拟角色(非形象)进行文本或语音会话 体验地址:RealChar. 代码库:GitHub - Shaunwei/RealChar: 🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime (All in One Codebase!). Have a natural seamless conversation with AI…

3.3 Ax=b 的完全解

一、Ax b 在求解 A x 0 A\boldsymbol x\boldsymbol 0 Ax0 时&#xff0c;我们将其转化成 R x 0 R\boldsymbol x\boldsymbol 0 Rx0&#xff0c;将自由变量赋予特殊值&#xff08;1 或 0&#xff09;&#xff0c;主元变量即可通过回代求出。这个过程中我们没有关注右侧的 …

基于SpringBoot+Vue的在线教育系统(源码+文档+包运行)

一.系统概述 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了在线教育系统的开发全过程。通过分析在线教育系统管理的不足&#xff0c;创建了一个计算机管理在线教育系统的方案。文章介绍了在线教育系统的系统分析部…

Python基于Django的微博热搜、微博舆论可视化系统

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

【SLAM】在Win10上实现Nerf-Pytorch【GPU版】

文章目录 ReadMe安装依赖运行下载两个示例数据集:lego和fern训练一个低分辨率的Lego NeRF:训练一个低分辨率蕨类植物NeRF:更多数据集预训练模型可复现实现1、下载nerf-pytorch工程2、安装依赖3、下载数据4、运行lego NeRF:ReadMe Github链接 NeRF (神经辐射场)是一种在合成…

UE5 C++ 创建3DWidgete 血条 再造成伤害

一&#xff0e;创建 二&#xff0e;&#xff35;&#xff29;里声明变量 创建类 public:UPROPERTY(EditAnywhere,BlueprintReadWrite,Category "MyWidget")float CurrentHealth 100.0f;UPROPERTY(EditAnywhere,BlueprintReadWrite,Category "MyWidget"…

代码随想录算法训练营DAY24|C++回溯算法Part.1|回溯算法理论基础、77.组合、组合问题的剪枝操作

文章目录 回溯算法如何理解回溯算法回溯法模版回溯算法模版框架 77.组合树形结构回溯三部曲伪代码CPP代码实现 组合问题的剪枝操作 回溯算法 如何理解回溯算法 回溯法解决的问题都可以抽象为树形结构。 因为回溯法解决的都是在集合中递归查找子集&#xff0c;集合的大小就构成…

mysql面试题 二

超键、候选键、主键、外键分别是什么&#xff1f; 超键&#xff1a;在关系中能唯一标识元组的属性集称为关系模式的超键。一个属性可以为作为一个超键&#xff0c;多个属性组合在一起也可以作为一个超键。超键包含候选键和主键。候选键&#xff1a;是最小超键&#xff0c;即没…

【Altium Designer 20 笔记】PCB板框

Altium Designer中设置PCB板框 PCB板框位于Mechanical1层 点击放置中的线条或使用其他绘图工具来绘制板框, 可以绘制矩形、圆形或其他形状的板框,确保板框是闭合的 注意&#xff1a;在绘制板框时&#xff0c;确保线条的起点和终点相连&#xff0c;形成一个闭合的图形。 快捷键D…

【C++航海王:追寻罗杰的编程之路】异常——错误处理方式之一

目录 引言 1 -> C语言传统的处理错误的方式 2 -> C异常概念 3 -> 异常的使用 3.1 -> 异常的抛出和捕获 3.2 -> 异常的重新抛出 3.3 -> 异常规范 4 -> 自定义异常体系 5 -> C标准库的异常体系 6 -> 异常的优缺点 引言 在C编程中&#xff…

C++ | Leetcode C++题解之第32题最长有效括号

题目&#xff1a; 题解&#xff1a; class Solution { public:int longestValidParentheses(string s) {int left 0, right 0, maxlength 0;for (int i 0; i < s.length(); i) {if (s[i] () {left;} else {right;}if (left right) {maxlength max(maxlength, 2 * ri…

单细胞分析|映射和注释查询数据集

reference映射简介 在本文中&#xff0c;我们首先构建一个reference&#xff0c;然后演示如何利用该reference来注释新的查询数据集。生成后&#xff0c;该reference可用于通过cell类型标签传输和将查询cell投影到reference UMAP 等任务来分析其他查询数据集。值得注意的是&am…

做一个好的程序员难吗?只需要这10个习惯

在这个世界上&#xff0c;有数以百万计的人对软件开发充满热情&#xff0c;他们有很多名字&#xff0c;如软件工程师、程序员、编码员、开发人员。一段时间后&#xff0c;这些人可能会成为一名优秀的编码员&#xff0c;并且他们将非常熟悉如何使用计算机语言完成工作。但是&…

【LeetCode】 2724. 排序方式

排序方式 给定一个数组 arr 和一个函数 fn&#xff0c;返回一个排序后的数组 sortedArr。你可以假设 fn 只返回数字&#xff0c;并且这些数字决定了 sortedArr 的排序顺序。sortedArr 必须按照 fn 的输出值 升序 排序。 你可以假设对于给定的数组&#xff0c;fn 不会返回重复的…

记录Python链接mysql的数据库的2种操作方式

一、使用pymysql库方式 import pymysqldb pymysql.connect(hostlocalhost,userroot,password123456) #创建链接&#xff0c;在3.8以后好像已经不支持这个种链接方式了&#xff0c; #db pymysql.connect(localhost,root,123456) cursor db.cursor()#拿到游标这样我们就拿到了…