本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052
从零开始网格上的深度学习-2:卷积网络CNN篇
- 引言
- 一、概述
- 1.1 卷积操作简述
- 1.2 网格上的面卷积
- 二、核心代码
- 2.1 面卷积
- 2.2 网络框架
- 三、基于CNN的网格分类
- 3.1 分类结果
- 3.2 全部代码
引言
本文主要内容如下:
- 介绍网格上基于
面元素
的卷积操作 - 参考最新的CNN网络模块-
ConvNeXt
1:A ConvNet for the 2020s,构造网格分类网络
一、概述
1.1 卷积操作简述
卷积网络的核心:卷积操作
就是数据元素特征与周围元素特征加权求和的一个计算过程。由卷积层实现,包括步长、卷积核大小等参数。
详情可百度或参考2:python 关于CNN的一些思考-2022
1.2 网格上的面卷积
无论水密or非水密的网格,其上的面并不是规则排列的。但对于三角形网格来说,每个面周围存在三个面
,借助以上特性可对每个面构造1
×
\times
× 4的卷积区域,然后借助Pytorch即可轻松将CNN应用到网格的面上,称其为面卷积
。
二、核心代码
2.1 面卷积
主要参考MeshCNN
3:A Network with an Edge中边卷积的代码即可,自己造的轮子没人家的好用…
- 让网格面及其邻面形成 ∣ F ∣ × |F| \times ∣F∣× 4的矩阵结构, ∣ F ∣ |F| ∣F∣是面的个数。类似2D图像的长 × \times ×宽
- 调用Pytorch中的Conv2d 或 Conv1d即可
class FaceConv(nn.Module):
"""
Face convolution with convolution region (参考 MeshCNN)
"""
def __init__(self, dim_in, dim_out, k, groups=1, bias=True):
super(FaceConv, self).__init__()
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size=(1, k), groups=groups, bias=bias)
self.k = k
def __call__(self, edge_f, mesh):
return self.forward(edge_f, mesh)
def forward(self, x, mesh):
if self.k == 1:
# x = x.squeeze(-1)
x = self.conv(x)
else:
x = x.squeeze(-1)
G = torch.cat([self.pad_gemm(i, x.shape[2], x.device) for i in mesh], 0) # batchsize
G = self.create_GeMM(x, G)
x = self.conv(G)
return x
def flatten_gemm_inds(self, Gi):
(b, ne, nn) = Gi.shape
ne += 1
batch_n = torch.floor(torch.arange(b * ne, device=Gi.device).float() / ne).view(b, ne)
add_fac = batch_n * ne
add_fac = add_fac.view(b, ne, 1)
add_fac = add_fac.repeat(1, 1, nn)
Gi = Gi.float() + add_fac[:, 1:, :]
return Gi
def create_GeMM(self, x, Gi):
Gishape = Gi.shape
padding = torch.zeros((x.shape[0], x.shape[1], 1), requires_grad=True, device=x.device)
x = torch.cat((padding, x), dim=2)
Gi = Gi + 1
Gi_flat = self.flatten_gemm_inds(Gi)
Gi_flat = Gi_flat.view(-1).long()
odim = x.shape
x = x.permute(0, 2, 1).contiguous()
x = x.view(odim[0] * odim[2], odim[1])
f = torch.index_select(x, dim=0, index=Gi_flat)
f = f.view(Gishape[0], Gishape[1], Gishape[2], -1)
f = f.permute(0, 3, 1, 2).contiguous() # 不加contiguous有时候会报错 - 中断训练
return f
def pad_gemm(self, m, xsz, device):
padded_gemm = torch.tensor(m.mesh_nb[:, 0:self.k - 1], device=device).float().requires_grad_()
padded_gemm = torch.cat((torch.arange(len(m.faces), device=device).float().unsqueeze(1), padded_gemm), dim=1)
padded_gemm = F.pad(padded_gemm, (0, 0, 0, xsz - len(m.faces)), "constant", 0)
padded_gemm = padded_gemm.unsqueeze(0)
return padded_gemm
2.2 网络框架
网络框架主要参考ConvNeXt
1:A ConvNet for the 2020s
- 主要借用了其中的
ConvNeXt Block
,通道可分离卷积 - LN - conv1x1up - GELU - conv1x1dn - 由于本文使用数据集较小,主要由几个Block串联组成分类网络
class TriCNN(nn.Module):
def __init__(self, dim_in, dims, classes_n=30):
super(TriCNN, self).__init__()
self.dims = dims[0:]
self.first_conv = FaceConv(dim_in, dims[0], k=4, groups=1, bias=True)
self.first_ln = nn.LayerNorm(dims[0], eps=1e-6)
self.conv1x1up = nn.Conv1d(dims[0], dims[0] * 2, 1)
self.act = nn.GELU()
self.conv1x1dn = nn.Conv1d(dims[0] * 2, dims[0], 1)
for i, dim in enumerate(self.dims[:]):
setattr(self, 'Block{}'.format(i), Block(dim, k=4))
self.last_ln = nn.LayerNorm(dims[-1], eps=1e-6)
# cls
self.gp = nn.AdaptiveAvgPool1d(1)
self.dp1 = nn.Dropout(0.5)
self.fc = nn.Linear(self.dims[-1], classes_n)
def forward(self, x, mesh):
x = x.permute(0, 2, 1).contiguous()
# 1.first Block
x = self.first_conv(x, mesh)
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.first_ln(x)
x = x.permute(0, 2, 1).contiguous()
x = self.conv1x1up(x)
x = self.act(x)
x = self.conv1x1dn(x)
# 2.Blocks
for i in range(len(self.dims) - 1):
x = getattr(self, 'Block{}'.format(i))(x, mesh)
# 3.final
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.last_ln(x)
x = x.permute(0, 2, 1).contiguous()
# 4.cls
x = self.gp(x)
x = x.view(-1, self.dims[-1])
x = self.dp1(x)
x = self.fc(x)
return x
class Block(nn.Module):
def __init__(self, dim, k=10, bias=True):
super(Block, self).__init__()
self.conv = FaceConv(dim, dim, groups=dim, k=k, bias=bias)
self.ln = nn.LayerNorm(dim,eps=1e-6)
self.conv1x1up = nn.Conv1d(dim, dim * 2, 1)
self.act = nn.GELU()
self.conv1x1dn = nn.Conv1d(dim * 2, dim, 1)
self.w = nn.Parameter(torch.zeros(1))
def forward(self, x, mesh):
identity = x
x = self.conv(x, mesh)
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.ln(x)
x = x.permute(0, 2, 1).contiguous()
x = self.conv1x1up(x)
x = self.act(x)
x = self.conv1x1dn(x)
x = x * self.w
x = x + identity
return x
三、基于CNN的网格分类
数据集是SHREC’11
可参考三角网格(Triangular Mesh)分类数据集 或 MeshCNN
3.1 分类结果
学习率还是有点高,权重波动很大,期间最高准确率是99.67
不得不提一句,其在网格分割上的准确率不如
UNet
形式的网络,也可能是没加入池化的锅…
3.2 全部代码
DataLoader代码请参考4:从零开始网格上的深度学习-1:输入篇(Pytorch)
import torch
import torch.nn as nn
import torch.nn.functional as F
from DataLoader_shrec11 import DataLoader
from DataLoader_shrec11 import Mesh
class TriCNN(nn.Module):
def __init__(self, dim_in, dims, classes_n=30):
super(TriCNN, self).__init__()
self.dims = dims[0:]
self.first_conv = FaceConv(dim_in, dims[0], k=4, groups=1, bias=True)
self.first_ln = nn.LayerNorm(dims[0], eps=1e-6)
self.conv1x1up = nn.Conv1d(dims[0], dims[0] * 2, 1)
self.act = nn.GELU()
self.conv1x1dn = nn.Conv1d(dims[0] * 2, dims[0], 1)
for i, dim in enumerate(self.dims[:]):
setattr(self, 'Block{}'.format(i), Block(dim, k=4))
self.last_ln = nn.LayerNorm(dims[-1], eps=1e-6)
# cls
self.gp = nn.AdaptiveAvgPool1d(1)
self.dp1 = nn.Dropout(0.5)
self.fc = nn.Linear(self.dims[-1], classes_n)
def forward(self, x, mesh):
x = x.permute(0, 2, 1).contiguous()
# 1.first Block
x = self.first_conv(x, mesh)
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.first_ln(x)
x = x.permute(0, 2, 1).contiguous()
x = self.conv1x1up(x)
x = self.act(x)
x = self.conv1x1dn(x)
# 2.Blocks
for i in range(len(self.dims) - 1):
x = getattr(self, 'Block{}'.format(i))(x, mesh)
# 3.final
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.last_ln(x)
x = x.permute(0, 2, 1).contiguous()
# 4.cls
x = self.gp(x)
x = x.view(-1, self.dims[-1])
x = self.dp1(x)
x = self.fc(x)
return x
class Block(nn.Module):
def __init__(self, dim, k=10, bias=True):
super(Block, self).__init__()
self.conv = FaceConv(dim, dim, groups=dim, k=k, bias=bias)
self.ln = nn.LayerNorm(dim,eps=1e-6)
self.conv1x1up = nn.Conv1d(dim, dim * 2, 1)
self.act = nn.GELU()
self.conv1x1dn = nn.Conv1d(dim * 2, dim, 1)
self.w = nn.Parameter(torch.zeros(1))
def forward(self, x, mesh):
identity = x
x = self.conv(x, mesh)
x = x.squeeze(-1)
x = x.permute(0, 2, 1).contiguous()
x = self.ln(x)
x = x.permute(0, 2, 1).contiguous()
x = self.conv1x1up(x)
x = self.act(x)
x = self.conv1x1dn(x)
x = x * self.w
x = x + identity
return x
class FaceConv(nn.Module):
"""
Face convolution with convolution region (参考 MeshCNN)
"""
def __init__(self, dim_in, dim_out, k, groups=1, bias=True):
super(FaceConv, self).__init__()
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size=(1, k), groups=groups, bias=bias)
self.k = k
def __call__(self, edge_f, mesh):
return self.forward(edge_f, mesh)
def forward(self, x, mesh):
if self.k == 1:
# x = x.squeeze(-1)
x = self.conv(x)
else:
x = x.squeeze(-1)
G = torch.cat([self.pad_gemm(i, x.shape[2], x.device) for i in mesh], 0) # batchsize
G = self.create_GeMM(x, G)
x = self.conv(G)
return x
def flatten_gemm_inds(self, Gi):
(b, ne, nn) = Gi.shape
ne += 1
batch_n = torch.floor(torch.arange(b * ne, device=Gi.device).float() / ne).view(b, ne)
add_fac = batch_n * ne
add_fac = add_fac.view(b, ne, 1)
add_fac = add_fac.repeat(1, 1, nn)
Gi = Gi.float() + add_fac[:, 1:, :]
return Gi
def create_GeMM(self, x, Gi):
Gishape = Gi.shape
padding = torch.zeros((x.shape[0], x.shape[1], 1), requires_grad=True, device=x.device)
x = torch.cat((padding, x), dim=2)
Gi = Gi + 1
Gi_flat = self.flatten_gemm_inds(Gi)
Gi_flat = Gi_flat.view(-1).long()
odim = x.shape
x = x.permute(0, 2, 1).contiguous()
x = x.view(odim[0] * odim[2], odim[1])
f = torch.index_select(x, dim=0, index=Gi_flat)
f = f.view(Gishape[0], Gishape[1], Gishape[2], -1)
f = f.permute(0, 3, 1, 2).contiguous() # 不加contiguous有时候会报错 - 中断训练
return f
def pad_gemm(self, m, xsz, device):
padded_gemm = torch.tensor(m.mesh_nb[:, 0:self.k - 1], device=device).float().requires_grad_()
padded_gemm = torch.cat((torch.arange(len(m.faces), device=device).float().unsqueeze(1), padded_gemm), dim=1)
padded_gemm = F.pad(padded_gemm, (0, 0, 0, xsz - len(m.faces)), "constant", 0)
padded_gemm = padded_gemm.unsqueeze(0)
return padded_gemm
if __name__ == '__main__':
# 输入
data_train = DataLoader(phase='train') # 训练集
data_test = DataLoader(phase='test') # 测试集
dataset_size = len(data_train) # 数据长度
print('#training meshes = %d' % dataset_size) # 输出模型个数
# 网络
net = TriCNN(data_train.input_n, [128, 128], data_train.class_n) # 创建网络 以及 优化器
optimizer = torch.optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999))
net = net.cuda(0)
loss_fun = torch.nn.CrossEntropyLoss(ignore_index=-1)
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('[Net] Total number of parameters : %.3f M' % (num_params / 1e6))
print('-----------------------------------------------')
# 迭代训练
for epoch in range(1, 201):
print('---------------- Epoch: %d -------------' % epoch)
for i, data in enumerate(data_train):
# 前向传播
net.train(True) # 训练模式
optimizer.zero_grad() # 梯度清零
face_features = torch.from_numpy(data['face_features']).float()
face_features = face_features.to(data_train.device).requires_grad_(True)
labels = torch.from_numpy(data['label']).long().to(data_train.device)
out = net(face_features, data['mesh']) # 输入到网络
# 反向传播
loss = loss_fun(out, labels)
loss.backward()
optimizer.step() # 参数更新
# 测试
net.eval()
acc = 0
for i, data in enumerate(data_test):
with torch.no_grad():
# 前向传播
face_features = torch.from_numpy(data['face_features']).float()
face_features = face_features.to(data_test.device).requires_grad_(False)
labels = torch.from_numpy(data['label']).long().to(data_test.device)
out = net(face_features, data['mesh'])
# 计算准确率
pred_class = out.data.max(1)[1]
correct = pred_class.eq(labels).sum().float()
acc += correct
acc = acc / len(data_test)
print('epoch: %d, TEST ACC: %0.2f' % (epoch, acc * 100))
A ConvNet for the 2020s ↩︎ ↩︎
python 关于CNN的一些思考-2022 ↩︎
MeshCNN: A Network with an Edge ↩︎
从零开始网格上的深度学习-1:输入篇(Pytorch) ↩︎