从参数数量视角理解深度学习神经网络算法 DNN, CNN, RNN, LSTM 以python为工具

从参数数量视角理解深度学习神经网络算法 DNN, CNN, RNN, LSTM 以python为工具

文章目录

  • 1. 神经网络数据预处理
    • 1.1 常规预测情景
    • 1.2 文本预测场景
  • 2.全连接神经网络 DNN
  • 3.卷积神经网络CNN
  • 4.循环神经网络 RNN
  • 5.长短期记忆神经网络 LSTM

在这里插入图片描述


      ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ

1. 神经网络数据预处理

使用python写神经网络算法前,通常需要先对数据进行预处理,使得数据称为符合算法要求的形式。这不限于归一化和特征提取。特征和标签的形式常常是初学者容易糊涂的。
常见的情况可以分为两种,一种是常规的预测场景,另一种则是文本预测场景。


1.1 常规预测情景

在常规的预测场景下,输入数据的shape可以分为三维情景和二维情景。

若为三维情景,输入数据的shape为(a,b,c),其中c>1。即表示,共有a条样本,b个特征。每个特征的特征值的维度为c。(其中c=1时效果等同于二维情景,但设定方式有一定区别)
API中对应的参数:
input_shape=(c,b)
input_length=b
input_dim=c

若为二维情景,设输入数据的shape是(a,b),则input_shape=(b,)
二维情景下的input_shape=(b,)相当于三维情境下的input_shape=(1,b)。
           在这里插入图片描述

对于输出层,无论是分类问题还是回归问题,根据输出值个数,即每个标签值的维度来设定输出层神经元的数量。
如,对于对每个样本只输出一个一个数值的回归问题,则输出层只需要一个神经元,对于每个样本输出两个或多个回归值的问题,则在输出层可以设置多个神经元,每个神经元对应其中一个预测的输出。
对于分类问题,在输出层设定一个神经元即可以实现一般的二分类问题;对于二个类别以上的分类问题,则可以先对输入的数据进行预处理:假设有[0,1,2]三类,0类则可以改写为[1,0,0],1类则则可以改写为[0,1,0],2类则可以改写为[0,0,1]。然后在输出层设置3个神经元,每个神经元则负责输出一个数字,输出的3个数字组成一个形如[x1,x2,x3]的长度为3的一维数组。其中x1是预测出的该样本标签为0类的概率,x2是预测出的该样本标签为1类的概率,x3是预测出的该样本标签为2的概率。得到预测结果后,[x1,x2,x3]其中最大的数字对应的索引,即为预测出该样本可能的类别。需要进一步去转换。


1.2 文本预测场景

对于文本预测场景,则在数据预处理阶段有着一套相对成熟的编码思路。
文本预测场景的数据形式通常都是三维形式,一般不再有二维形式。输入数据的shape为(a,b,c),则表示a条样本数据,使用前b个字符,预测下一个或多个字符。c则等于训练样本中所有可能的种类的数量。
将每个特征的特征值都转化为形如:[0 0 … 0 1 0 0 … 0 ]的矩阵形式。其中该矩阵的每个位置,都表示一个字符,0表示否,1表示是该字符。该矩阵长度则为c。
相应的,标签数据也需要转化为这种形式。若只预测后边一个数据,则设置c个神经元,其余逻辑同上述多维情景。

    在这里插入图片描述


2.全连接神经网络 DNN

对全连接神经网络,
首先以一个简单的神经网络结构为例:一个中间层,一个输出层。中间层设定5个神经元,输出层设定1个神经元。

全连接神经网络的每层参数的数量可以总结为,该层输入特征数据的数量(input_length)乘以该层神经元的数量,再加上该层神经元的数量。

代码示例如下

from keras.models import Sequential
from keras.layers import Dense

model1 = Sequential()
# 中间层 (或 隐藏层)
# 使用Dense()方法直接写第一个隐藏层,而不用写输入层时,要设定input_shape参数
model1.add(Dense(units = 5,   
                input_shape=(10,)     
                )  
           )  
# 输出层 1个神经元
model1.add(Dense(1))
model1.summary()

        在这里插入图片描述
其中中间层有55个参数,即输入的10个特征,乘以5个神经元的数量,加上5个神经元对应着5个偏置参数。10×5+5=55。
5个神经元有5个输出值,即下一个Dense,即输出层的输入维度为5,而输出层神经元数量为1,且也对应着一个偏置,所以输出层的参数数量为5×1+1=6个。两个层一共有61个参数。

模型图示如下:

from keras.utils import plot_model  
plot_model(model1, show_shapes=True)  

            在这里插入图片描述


如果输入的是三维数据,(n,10,3)为例,则在传入参数时,一定要注意,input_shape=(3,10),而不能写成(10,3)。

参数的个数与输入数据的维度input_dim无关(上边的数字3)。

model2 = Sequential()
model2.add(Dense(units = 5,   
                input_shape=(3,10)     
                )  
           )  


model2.add(Dense(1))
model2.summary()

输出结果:
          在这里插入图片描述

from keras.utils import plot_model  
plot_model(model2, show_shapes=True)     

模型图示如下:
            在这里插入图片描述
输入数据的是二维数据或三维数据,并不影响参数个数。


3.卷积神经网络CNN

这里建议选择使用Conv2D接口。(相对的是Conv1D)

设定卷积层神经元个数为32,即卷积层输出32个特征映射。
滤波核大小设定为3×3,输入数据的shape为(50,50,3),可以理解为高50像素,宽50像素,且有3个色彩通道的图片,也可以理解为,每个样本初始数据有50×50个特征,每个特征的特征值shape为(3,)。

池化层使用2维最大池化。

输出层只设定一个神经元。

则卷积层的参数个数 = (卷积核长×卷积核宽×色彩通道数量+1)× 卷积层神经元个数
其中1指的是一个偏置参数。(卷积核长×卷积核宽×色彩通道数量+1) 衡量的是每个特征映射对应的参数数量。

池化层没有参数。

输出层参数数量为,输入数据的维度×输出层神经元个数 + 1

代码示例如下

from keras.models import Sequential
from keras import layers


model3 = Sequential()
# 卷积层  100个特征映射,卷积核大小为7*7,(400,300,3)为输入数据的shape
model3.add(layers.Conv2D(100, (7, 7), input_shape=(400, 300, 3)))
# 最大池化层 3×3池化(也称池化步幅为3) 该层只做特征提取,没有参数
model3.add(layers.MaxPooling2D(3, 3))
# 展平层 该层也无参数
model3.add(layers.Flatten())
# 输出层 一个神经元
model3.add(layers.Dense(1))

model3.summary()

卷积层参数数量=(7×7×3+1)×100=14800。
         在这里插入图片描述

from keras.utils import plot_model  
plot_model(model3, show_shapes=True)   

模型图示如下:
          在这里插入图片描述


4.循环神经网络 RNN

每个RNN层有一个循环核。一个循环核有多个记忆体。

time_step不影响参数的个数。

设 RNN层 输入向量的维度 为input_dim
RNN层神经元个数 为 units

则RNN层的参数个数为 i n p u t _ d i m × u n i t s + + u n i t s 2 + u n i t s input\_dim×units++units^2+units input_dim×units++units2+units。输出层的参数数量计算方法还是常规思路。

为了更直观,特在下图示例中标出。 
以输入数据维度为5,记忆体个数为3,输出数据维度为5为例。神经网络包含一个隐藏层和一个输出层。

在这里插入图片描述


代码如下:

time_step = 10 # time_step不影响参数数量
input_dim = 5
units=3 # RNN层的神经元个数,也是记忆体的个数
output_dim = 5


model4 = Sequential()
# RNN层 5个神经元 输入数据维度为5
model4.add(layers.SimpleRNN(units=units, input_shape=(time_step,input_dim),activation='relu'))
# 输出层 一个神经元 输出数据维度为5
model4.add(layers.Dense(output_dim))

model4.summary()

         在这里插入图片描述
模型图示及代码:

from keras.utils import plot_model  
plot_model(model4, show_shapes=True)     

            在这里插入图片描述


5.长短期记忆神经网络 LSTM

LSTM模型的核心是三个门和一个记忆细胞,LSTM层的参数数量为相同参数RNN模型的RNN层参数数量的4倍(单层的4倍,而非整个模型参数数量的4倍)。
输入门,遗忘门,记忆细胞,输出门的公式依次如下:

 输入门: i t = σ ( W i x t + U i h t − 1 + b i ) i_t=\sigma(W_ix_t+U_ih_{t-1}+b_i) it=σ(Wixt+Uiht1+bi)

 遗忘门: f t = σ ( W f x t + U f h t − 1 + b f ) f_t=\sigma(W_fx_t+Ufh_{t-1}+b_f) ft=σ(Wfxt+Ufht1+bf)

 内部记忆单元: c t ′ = t a n h ( W c x t + U c h t − 1 ) c'_t=tanh(W_cx_t+U_ch_{t-1}) ct=tanh(Wcxt+Ucht1)

         c t = f t c t − 1 + i t c t ′ c_t=f_tc_{t-1}+i_tc'_t ct=ftct1+itct

 输出门: o t = σ ( W o x t + U o h t − 1 + b o ) o_t=\sigma(W_ox_t+U_oh_{t-1}+b_o) ot=σ(Woxt+Uoht1+bo)

      h t = o t t a n h ( c t ) h_t=o_ttanh(c_t) ht=ottanh(ct)
从上边公式可以看出,相比于上边RNN中的 W x h , b h , W h h W_{xh},b_{h},W_{hh} Wxh,bh,Whh三个参数矩阵中的参数,LSTM神经网络在每个门中都多了一组 W , U , b W,U,b W,U,b参数。一共多了三组,所以是4倍数量的参数。

from keras.models import Sequential
from keras.layers import Dense,LSTM

time_step = 10
input_dim = 5
units=3 # RNN层的神经元个数,也是记忆体的个数
output_dim = 5

model5 = Sequential()
# LSTM层
model5.add(LSTM(units=units,input_shape=(time_step,input_dim),activation='relu'))
# 添加输出层 
model5.add(Dense(units=output_dim, activation='softmax'))

model5.summary()

代码执行结果如下:
         在这里插入图片描述
LSTM层参数数量为108,为RNN层27的四倍。加上输出层后总计有128个参数。


模型结构:

from keras.utils import plot_model  
plot_model(model5, show_shapes=True)     

          在这里插入图片描述


🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/520.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PMP-项目管理知识体系概述

文章目录前言PMP-项目管理知识体系概述1. 项目管理知识体系三个维度1.1. 时间维度1.2. 管理维度1.3. 10大知识领域2. 十大知识领域之间的关系3. 项目管理的全链路3.1. 需求 -> 目标3.2. 目标 -> 计划3.3. 计划 -> 执行3.4. 执行 -> 收尾4. 项目管理类型分类说明4.1…

【Web APls简介】

Web APls简介1 本节目标2 Web APIs 和 JS 基础关联性2.1 JS组成2.2 JS 基础阶段以及 Web APIs 阶段3 API 和 Web API3.1 API3.2 Web API3.3 API 和 Web API 总结1 本节目标 说出 Web APIs 阶段与 JavaScript 语法阶段的关联性说出什么是 API说出什么是 Web API 2 Web APIs 和…

30岁了,说几句大实话

是的,我 30 岁了,还是周岁。 就在这上个月末,我度过了自己 30 岁的生日。 都说三十而立,要对自己有一个正确的认识,明确自己以后想做什么,能做什么。 想想时间,过得真快。 过五关斩六将&…

2021电赛国一智能送药小车(F题)设计报告

2021电赛国一智能送药小车(F题)设计报告 【写在前面的话】 电赛是一个很奇妙的过程,可能有些人觉得电赛的门槛太高,那便意味着,当你决定要参加电赛的那一刻起,这一段路、这些日子就注定不会太轻松&#xf…

顺序表——“数据结构与算法”

各位CSDN的uu们你们好呀,今天小雅兰的内容是数据结构与算法里面的顺序表啦,在我看来,数据结构总体上是一个抽象的东西,关键还是要多写代码,下面,就让我们进入顺序表的世界吧 线性表 顺序表 线性表 线性表&…

【LeetCode】剑指 Offer(25)

目录 题目:剑指 Offer 49. 丑数 - 力扣(Leetcode) 题目的接口: 解题思路: 代码: 过啦!!! 写在最后: 题目:剑指 Offer 49. 丑数 - 力扣&…

【云原生】Linux进程控制(创建、终止、等待)

✨个人主页: Yohifo 🎉所属专栏: Linux学习之旅 🎊每篇一句: 图片来源 🎃操作环境: CentOS 7.6 阿里云远程服务器 Good judgment comes from experience, and a lot of that comes from bad jud…

MySQL对表操作

目录 CRUD 增加(Create) 查询(Retrieve) 全列查询 指定列查询 查询字段为表达式 别名 去重:DISTINCT 排序:ORDER BY 条件查询:WHERE 逻辑运算符: 修改(Update) 删除&…

「入门指南」轻松学习嵌入式 GPIO:从原理到应用一步到位

嵌入式系统是指在其他系统中嵌入的计算机系统,通常由微处理器或微控制器、内存和其他支持电路组成。嵌入式系统的应用领域非常广泛,涉及从智能家居设备到汽车控制系统,再到飞机、医疗设备等各种设备。对于嵌入式系统的应用,GPIO是…

我在字节当主管:百次面试结果,总结一个刷掉99%求职者的问题!

我一个在大厂当主管的朋友,跟我说:“现在招性能测试太难了,当然不是说没人干,一开招聘信息就能收到一大把简历,其中不乏学历亮眼、背景出色、简历里各种高并发、大流量的项目经验的人才。问题在于,当你提出…

【C++】模板初阶

文章目录泛型编程函数模板概念格式实例化匹配原则类模板定义格式实例化泛型编程 当我们的一个函数涉及到多个类型的处理时,我们就需要重载函数来实现,但是重载函数是存在一些局限性的。   重载函数仅仅是类型不同,代码的复用率较低&#xf…

【AcWing】蓝桥杯备赛-深度优先搜索-dfs(2)

目录 写在前面: 题目:94. 递归实现排列型枚举 - AcWing题库 读题: 输入格式: 输出格式: 数据范围: 输入样例: 输出样例: 解题思路: 代码: AC &…

使用new bing简易教程

申请new bing 首先先申请new bing然后等待通过,如下图 申请完,用edge浏览器,若有科学方法,就能在右上角的聊天进行向AI提问 使用插件来进行直接访问New Bing 在edge浏览器中安装一个插件,地址为:Mod…

HTML樱花飘落

樱花效果 FOR YOU GIRL 以梦为马&#xff0c;不负韶华 LOVE YOU FOREVER 实现代码 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html><head><meta http-equiv"…

Windows逆向安全(一)之基础知识(二)

反汇编分析C语言 空函数反汇编 #include "stdafx.h"//空函数 void function(){}int main(int argc, char* argv[]) {//调用空函数function();return 0; }我们通过反汇编来分析这段空函数 函数外部 12: function(); 00401048 call ILT5(func…

一款丧心病狂的API测试工具:Apifox!

你好&#xff0c;我是测试开发工程师——凡哥。欢迎和我交流测试领域相关问题&#xff08;测试入门、技术、python交流都可以&#xff09; 我们平时在做接口测试的时候&#xff0c;对于一些常用的接口测试工具的使用应该都非常熟悉了&#xff1a; 接口文档&#xff1a;Swagge…

2023年网络安全比赛--attack(新)数据包分析中职组(超详细)

一、竞赛时间 180分钟 共计3小时 任务环境说明: 1 分析attack.pcapng数据包文件,通过分析数据包attack.pcapng找出恶意用户第一次访问HTTP服务的数据包是第几号,将该号数作为Flag值提交; 2.继续查看数据包文件attack.pcapng,分析出恶意用户扫描了哪些端口,将全部的端口号…

比df更好用的命令!

大家好&#xff0c;我是良许。 对于分析磁盘使用情况&#xff0c;有两个非常好用的命令&#xff1a;du 和 df 。简单来说&#xff0c;这两个命令的作用是这样的&#xff1a; du 命令&#xff1a;它是英文单词 disk usage 的简写&#xff0c;主要用于查看文件与目录占用多少磁…

π-Day快乐:Python可视化π

π-Day快乐&#xff1a;Python可视化π 今天是3.14&#xff0c;正好是圆周率 π\piπ 的前3位&#xff0c;因此数学界将这一天定为π\bold{\pi}π day。 π\piπ 可能是最著名的无理数了&#xff0c;人类对 π\piπ 的研究从未停止。目前人类借助计算机已经计算到 π\piπ 小数…

考研408 王道计算机考研 (初试/复试) 网课笔记总结

计算机初试、复试笔记总结&#xff08;导航栏&#xff09;&#x1f4dd; 408 考研人&#xff0c;人狠话不多&#xff1a;3、2、1&#xff0c;上链接 &#xff01; 408 考研初试 - 备战期&#xff0c;专业课笔记&#xff0c;导航&#x1f6a5;&#x1f6a5;&#x1f6a5; &…