WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)

WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)

目录

    • WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现WOA-Transformer鲸鱼算法优化编码器时间序列预测,运行环境Matlab2023b及以上;
2.excel数据,方便替换,可在下载区获取数据和程序内容。
3.优化参数为注意力机制头数、学习率、正则化系数,图很多,包括预测效果图、误差分析图、决定系数图。
4.data为数据集,输入输出单个变量,时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹,运行环境为Matlab2023b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。
6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;
注:程序和数据放在一个文件夹

程序设计

  • 完整源码和数据获取方式私信博主回复WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/956480.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SpringBoot和PostGIS的各国及所属机场信息检索及可视化实现

目录 前言 一、空间数据简介 1、全球国家信息表 2、机场信息表 3、国家机场检索实现 二、SpringBoot后台实现 1、模型层实现 2、控制层实现 三、WebGIS可视化实现 1、Leaflet界面实现 2、国家及其机场可视化成果 3、全球机场数量排行榜 四、总结 前言 新春佳节即将…

MLMs之Agent:Phidata的简介、安装和使用方法、案例应用之详细攻略

MLMs之Agent:Phidata的简介、安装和使用方法、案例应用之详细攻略 目录 Phidata简介 Phidata安装和使用方法 1、安装 2、使用方法 (1)、认证 (2)、创建 Agent (3)、运行 Agent (4)、Agent Playground Phidata 案例应用 1、多工具 Agent 2、多模态 Agent …

【机器学习实战入门项目】使用深度学习创建您自己的表情符号

深度学习项目入门——让你更接近数据科学的梦想 表情符号或头像是表示非语言暗示的方式。这些暗示已成为在线聊天、产品评论、品牌情感等的重要组成部分。这也促使数据科学领域越来越多的研究致力于表情驱动的故事讲述。 随着计算机视觉和深度学习的进步,现在可以…

【ArcGIS微课1000例】0140:总览(鹰眼)、放大镜、查看器的用法

文章目录 一、总览工具二、放大镜工具三、查看器工具ArcGIS中提供了三种局部查看的工具: 总览(鹰眼)、放大镜、查看器,如下图所示,本文讲述这三种工具的使用方法。 一、总览工具 为了便于效果查看与比对,本实验采用全球影像数据(位于配套实验数据包中的0140.rar中),加…

从零搭建一套远程手机的桌面操控和文件传输的小工具

从零搭建一套远程手机的桌面操控和文件传输的小工具 --ADB连接专题 一、前言 前面的篇章中,我们确定了通过基于TCP连接的ADB控制远程手机的操作思路。本篇中我们将进行实际的ADB桥接的具体链路搭建工作,从原理和实际部署和操作层面上,从零…

ROS2 与机器人视觉入门教程(ROS2 OpenCV)

系列文章目录 前言 由于现有的ROS2与计算机视觉(特别是机器人视觉)教程较少,因此根据以往所学与积累的经验,对ROS2与机器人视觉相关理论与代码进行分析说明。 本文简要介绍了机器人视觉。首先介绍 ROS2 中图像发布者和订阅者的基…

JVM 面试八股文

目录 1. 前言 2. JVM 简介 3. JVM 内存划分 3.1 为什么要进行内存划分 3.2 内存划分的核心区域 3.2.1 核心区域一: 程序计数器 3.2.2 核心区域二: 元数据区 3.2.3 核心区域三: 栈 3.2.4 核心区域四: 堆 4. JVM 类加载机制 4.1 类加载的步骤 4.1.1 步骤一: 加载 4…

我的世界-与门、或门、非门等基本门电路实现

一、红石比较器 (1) 红石比较器结构 红石比较器有前端单火把、后端双火把以及两个侧端 其中后端和侧端是输入信号,前端是输出信号 (2) 红石比较器的两种模式 比较模式 前端火把未点亮时处于比较模式 侧端>后端 → 0 当任一侧端强度大于后端强度时,输出…

【2024年华为OD机试】 (B卷,100分)- 字符串分割(Java JS PythonC/C++)

一、问题描述 题目解析 问题描述 给定一个非空字符串 s,要求将该字符串分割成若干子串,使得每个子串的 ASCII 码值之和均为“水仙花数”。具体要求如下: 若分割不成功,则返回 0;若分割成功且分割结果不唯一&#x…

Elasticsearch 和arkime 安装

安装一定要注意版本号,不然使用不了 这里Ubuntu使用ubuntu-20.04.6-desktop-amd64.iso elasticsearch这里使用Elasticsearch 7.17.5 | Elastic arkime这里使用wget https://s3.amazonaws.com/files.molo.ch/builds/ubuntu-20.04/arkime_3.4.2-1_amd64.deb 大家想…

简述mysql 主从复制原理及其工作过程,配置一主两从并验证。

MySQL 主从同步是一种数据库复制技术,它通过将主服务器上的数据更改复制到一个或多个从服务器,实现数据的自动同步。 主从同步的核心原理是将主服务器上的二进制日志复制到从服务器,并在从服务器上执行这些日志中的操作。 MySQL主从同步是基…

MySQL 主从复制原理及其工作过程的配置

一、MySQL主从复制原理 MySQL 主从同步是一种数据库复制技术,它通过将主服务器上的数据更改复制到一个或多个从服务器,实现数据的自动同步。 主从同步的核心原理是将主服务器上的二进制日志复制到从服务器,并在从服务器上执行这些日志中的操作…

多平台下Informatica在医疗数据抽取中的应用

一、引言 1.医疗数据抽取与 Informatica 概述 1.1 医疗数据的特点与来源 1.1.1 数据特点 医疗数据具有显著的多样性特点。从数据类型来看,涵盖了结构化数据,如患者的基本信息、检验检查结果等,这些数据通常以表格形式存储,便于…

智能创造的幕后推手:AIGC浪潮下看AI训练师如何塑造智能未来

文章目录 一、AIGC时代的算法与模型训练概览二、算法与模型训练的关键环节三、AI训练师的角色与职责四、AI训练师的专业技能与素养五、AIGC算法与模型训练的未来展望《AI训练师手册:算法与模型训练从入门到精通》亮点内容简介作者简介谷建阳 目录 《AI智能化办公&am…

有限元分析学习——Anasys Workbanch第一阶段笔记(13)网格单元分类、物理场与自由度概念

目录 0 序言 1 网格单元分类 2 各类单元的应用 3 massage与帮助和查看 4 物理场和自由度 4.1 各种单元自由度 4.2 结构自由度 0 序言 本章主要讲解网格单元的分类及物理场和自由度的相关概念。 1 网格单元分类 按单元的形状分类:实体单元、壳单元和杆梁单元…

RC2在线加密工具

RC2是由著名密码学家Ron Rivest设计的一种传统对称分组加密算法,它可作为DES算法的建议替代算法。RC2是一种分组加密算法,RC2的密钥长度可变,可以从8字节到128字节,安全性选择更加灵活。 开发调试上,有时候需要进行对…

深度学习笔记——循环神经网络RNN

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。 文章目录 文本特征提取的方法1. 基础方法1.1 词袋模型(Bag of Words, BOW)工作原…

.NET周刊【1月第1期 2025-01-05】

国内文章 3款.NET开源、功能强大的通讯调试工具,效率提升利器! https://www.cnblogs.com/Can-daydayup/p/18631410 本文介绍了三款功能强大的.NET开源通讯调试工具,旨在提高调试效率。这些工具包括LLCOM,提供串口调试和自动化处…

AT8870单通道直流电机驱动芯片

AT8870单通道直流电机驱动芯片 典型应用原理图 描述 AT8870是一款刷式直流电机驱动器,适用于打印机、电器、工业设备以及其他小型机器。两个逻辑输入控制H桥驱动器,该驱动器由四个N-MOS组成,能够以高达3.6A的峰值电流双向控制电机。利用电流…

创建 pdf 合同模板

创建 pdf 合同模板 一、前言二、模板展示三、制作过程 一、前言 前段时间要求创建“pdf”模板,学会了后感觉虽然简单,但开始也折腾了好久,这里做个记录。 二、模板展示 要创建这样的模板 三、制作过程 新建一个“Word”,这里命…