微服务之LoadBalancer负载均衡服务调用

一、概述

1.1什么是负载均衡

LB,既负载均衡(Load Balancer),是高并发、高可用系统必不可少的关键组件,其目标是尽力将网络流量平均分发到多个服务器上,以提高系统整体的响应速度和可用性。

负载均衡的主要作用

  1. 高并发:负载均衡通过算法调整负载,尽力均匀的分配应用集群中的各结点的工作量。从而提升整个应用集群处理并发的能力(吞吐量)
  2. 伸缩性:添加或减少服务器数量,然后由负载均衡分发控制。使集群具备伸缩性。
  3. 高可用:负载均衡器可以监控候选服务器,当服务器不可用时,自动跳转,将请求分发给可用的服务器。使服务集群具有高可用特性。
  4. 安全防护:负载均衡软件或硬件提供了安全性功能;如防护墙,黑名单、防攻击。  

1.2负载均衡的分类

负载均衡已出现很久的技术,并不是什么黑科技,根据不同的维度可以进行不同的分类。

从支持负载均衡的载体来看,可以将负载均衡分为两类:硬件负载均衡软件负载均衡;

硬件负载均衡

硬件负载均衡:一般是在定制处理器上运行的独立负载均衡服务器,价格昂贵,土豪专属。

硬件负载均衡的主流产品:F5Big-IP,Citrix(思杰)Netscaler

硬件负载均衡优点

  • 功能强大:支持全局负载均衡并提供较全面的、复杂的负载均衡算法。
  • 性能强悍:硬件负载均衡由于是在专用处理器上运行,因此吞吐量大,可支持单机百万以上的并发。
  • 安全性高:往往具备防火墙,防 DDos 攻击等安全功能。

硬件负载均衡缺点

  • 成本昂贵:购买和维护硬件负载均衡的成本都很高。
  • 扩展性差:当访问量突增时,超过限度不能动态扩容。

软件负载均衡

软件负载均衡从软件层面实现负载均衡,一般可以在任何标准物理设备上运行,

软件负载均衡主流产品:Nginx、HAProxy、LVS。

  • LVS可以作为四层负载均衡器,其负载均衡的性能优于Nginx。
  • HAProxy可以作为HTTP和TCP负载均衡器。
  • Nginx、HAProxy可以作为四层或七层负载均衡器。

软件负载均衡优点

  • 成本低廉:只要每个Liunx服务器,然后装上Nginx或其他负载均衡软件即可。
  • 灵活:7层和4层负载均衡可以根据业务进行选择,有可以根据业务进行比较方便的扩展,比如:由于业务特殊需要做一些定制化的功能。
  • 扩展性好:适应动态变化,可以通过添加软件负载均衡实例,动态扩展到超出初始容量的能力

软件负载均衡缺点

  • 性能一般:比起硬件来说支撑并发数不大。
  • 功能没有硬件强大
  • 安全性没有硬件负载均衡高

1.3Ribbon(过时,了解即可)

Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具。

简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等。简单的说,就是在配置文件中列出Load Balancer(简称LB)后面所有的机器,Ribbon会自动的帮助你基于某种规则(如简单轮询,随机连接等)去连接这些机器。我们很容易使用Ribbon实现自定义的负载均衡算法。

1.4loadbalancer

Spring Cloud LoadBalancer是由SpringCloud官方提供的一个开源的、简单易用的客户端负载均衡器,它包含在SpringCloud-commons中用它来替换了以前的Ribbon组件。相比较于Ribbon,SpringCloud LoadBalancer不仅能够支持RestTemplate,还支持WebClient(WeClient是Spring Web Flux中提供的功能,可以实现响应式异步请求)

官网https://docs.spring.io/spring-cloud-commons/reference/spring-cloud-commons/loadbalancer.html

loadbalancer本地负载均衡客户端 VS Nginx服务端负载均衡区别

 

Nginx是服务器负载均衡,客户端所有请求都会交给nginx,然后由nginx实现转发请求,即负载均衡是由服务端实现的。

 

loadbalancer本地负载均衡,在调用微服务接口时候,会在注册中心上获取注册信息服务列表之后缓存到JVM本地,从而在本地实现RPC远程服务调用技术。

1.5负载均衡算法

负载均衡算法是负载均衡服务核心中的核心。负载均衡产品多种多样,但是各种负载均衡算法原理是共性的。负载均衡算法有很多种,分别适用于不同的应用场景,本文仅介绍最为常见的负载均衡算法的特性及原理:轮询随机最小活跃数源地址哈希一致性哈希

轮询(Random)

将请求按顺序轮流地分配到每个节点上,不关心每个节点实际的连接数和当前的系统负载。

优点:简单高效,易于水平扩展,每个节点满足字面意义上的均衡;

缺点:没有考虑机器的性能问题,集群性能瓶颈更多的会受性能差的服务器影响。

随机

将请求随机分配到各个节点。由概率统计理论得知,随着客户端调用服务端的次数增多,其实际效果越来越接近于平均分配,也就是轮询的结果。

动态均衡算法

  • 最小连接数法

    根据每个节点当前的连接情况,动态地选取其中当前积压连接数最少的一个节点处理当前请求,尽可能地提高后端服务的利用效率,将请求合理地分流到每一台服务器。

    优点:动态,根据节点状况实时变化;

    缺点:提高了复杂度,每次连接断开需要进行计数;

    实现:将连接数的倒数当权重值。

  • 最快响应速度法

    根据请求的响应时间,来动态调整每个节点的权重,将响应速度快的服务节点分配更多的请求,响应速度慢的服务节点分配更少的请求,俗称能者多劳,扶贫救弱。

    优点:动态,实时变化,控制的粒度更细,跟灵敏;

    缺点:复杂度更高,每次需要计算请求的响应速度;

    实现:可以根据响应时间进行打分,计算权重。

  • 观察模式法

    观察者模式是综合了最小连接数和最快响应度,同时考量这两个指标数,进行一个权重的分配

 源地址哈希

根据客户端的IP地址,通过哈希计算得到一个数值,用该数值对服务器节点数进行取模,得到的结果便是要访问节点序号。采用源地址哈希法进行负载均衡,同一IP地址的客户端,当后端服务器列表不变时,它每次都会落到到同一台服务器进行访问。

优点:相同的IP每次落在同一个节点,可以人为干预客户端请求方向;

缺点:如果某个节点出现故障,会导致这个节点上的客户端无法使用,无法保证高可用。当某一用户成为热点用户,那么会有巨大的流量涌向这个节点,导致冷热分布不均衡,无法有效利用起集群的性能。所以当热点事件出现时,一般会将源地址哈希法切换成轮询法。

一致性哈希

主要的特点就是Hash环,我们的请求可以构建成一个Hash环,按照顺时针记录hash和请求。当我们的服务挂了A时,我们只需要将A的请求交给A后面的B处理;当我们需要增加服务器C时,我们只需要在Hash环上划一块范围,然后交给C;这样就可以实现动态的扩容和缩容。一致性哈希用于解决分布式缓存系统中的节点选择和在增删服务器后,节点减少带来的数据缓存的消失与重新分配问题。

二、实战

2.1Idea同一套代码,运行多个不同端口的服务

Edit Configurations

点击加号,然后点击SpringBoot

勾选设置

设置

Allow multiple instances(允许开启多个实例)

Add VM options        (开启虚拟机选项)

-Dserver.port=3399        (设置实例端口)

-Dxxl.job.executor.port=9998(设置xxl-job端口)我这里因为配置了xxl-job所以需要配置,可以不用写

填写下图中的1,2,3,其中2的端口号与原来的不一样即可

 2.2Consu数据持久化配置

2.3负载均衡实现

配置

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-loadbalancer</artifactId>
</dependency>

原理

 @Resource
    private DiscoveryClient discoveryClient;
    @GetMapping("/consumer/discovery")
    @Operation(summary = "查询")
    public String discovery()
    {
        List<String> services = discoveryClient.getServices();
        for (String element : services) {
            System.out.println(element);
        }

        System.out.println("===================================");

        List<ServiceInstance> instances = discoveryClient.getInstances("cloud-payment-service");
        for (ServiceInstance element : instances) {
            System.out.println(element.getServiceId()+"\t"+element.getHost()+"\t"+element.getPort()+"\t"+element.getUri());
        }

        return instances.get(0).getServiceId()+":"+instances.get(0).getPort();
    }

 负载均衡算法:rest接口第几次请求数 % 服务器集群总数量 = 实际调用服务器位置下标  ,每次服务重启动后rest接口计数从1开始

List<ServiceInstance> instances = discoveryClient.getInstances("cloud-payment-service");

 

如:   List [0] instances = 127.0.0.1:8002

   List [1] instances = 127.0.0.1:8001

 

8001+ 8002 组合成为集群,它们共计2台机器,集群总数为2, 按照轮询算法原理:

 

当总请求数为1时: 1 % 2 =1 对应下标位置为1 ,则获得服务地址为127.0.0.1:8001

当总请求数位2时: 2 % 2 =0 对应下标位置为0 ,则获得服务地址为127.0.0.1:8002

当总请求数位3时: 3 % 2 =1 对应下标位置为1 ,则获得服务地址为127.0.0.1:8001

当总请求数位4时: 4 % 2 =0 对应下标位置为0 ,则获得服务地址为127.0.0.1:8002

如此类推......

2.4 负载均衡算法原理

算法切换

@Configuration // 标记为配置类
@LoadBalancerClient(value = "cloud-payment-service", configuration = RestTemplateConfig.class) // 使用负载均衡器客户端注解,指定服务名称和配置类
public class RestTemplateConfig {

    @Bean // 定义一个Bean
    @LoadBalanced // 使用@LoadBalanced注解赋予RestTemplate负载均衡的能力
    public RestTemplate restTemplate() {
        return new RestTemplate(); // 返回一个新的RestTemplate实例
    }

    @Bean // 定义一个Bean
    ReactorLoadBalancer<ServiceInstance> randomLoadBalancer(Environment environment, // 注入环境变量
                                                            LoadBalancerClientFactory loadBalancerClientFactory) { // 注入负载均衡器客户端工厂
        String name = environment.getProperty(LoadBalancerClientFactory.PROPERTY_NAME); // 获取负载均衡器的名称

        // 创建并返回一个随机负载均衡器实例
        return new RandomLoadBalancer(loadBalancerClientFactory.getLazyProvider(name, ServiceInstanceListSupplier.class), name);
    }
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544026.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IDEA阅读Java源码 SimpleDateFormat

IDEA阅读Java源码 SimpleDateFormat 文章目录 IDEA阅读Java源码 SimpleDateFormat一、阅读的代码二、IDEA操作2.1 标记断点2.2 启用Debug2.3 按键区分2.4 强制进入方法2.5 进入指定方法2.6 多方法进入指定方法2.7 进入正确的方法2.8 真正的方法体实现 三、SimpleDateFormat源码…

网络篇08 | 运输层 tcp

网络篇08 | 运输层 tcp 01 简介1&#xff09;运输层的作用2&#xff09;与应用层的关系3&#xff09;两个协议的应用场景4&#xff09;传输的数据单位 02 功能特性1&#xff09;面向连接2&#xff09;停止等待协议3&#xff09;流水线传输协议4&#xff09;滑动窗口机制5&#…

011、Python+fastapi,第一个后台管理项目走向第11步:建立python+fastapi项目,简单测试一下

一、说明 本文章就是记录自己的学习过程&#xff0c;如果有用您可以参考&#xff0c;没用你就略过&#xff0c;没有好与不好之分&#xff0c;今天主要是参考了gitee上的一些项目&#xff0c;一步一步的往后i建立 对于学习来说&#xff0c;如果您有java c等经验&#xff0c;py…

Redis的哨兵机制

引入&#xff1a; 主从复制最大的问题还是在主节点上&#xff0c;主节点挂了&#xff0c;从节点就迷茫了&#xff0c;虽然能够提供读操作&#xff0c;但是从节点不能自动生成主节点&#xff0c;不能替换原有主节点对应的角色&#xff1b;此时&#xff0c;就需要程序员/运维手工…

绿联HDMI延长器40265使用AG7120芯片放大器方案

HDMI延长器和放大器 延长器&#xff1a;主要用于HDMI线的延长&#xff0c;有HDMI对接头方式延长&#xff0c;或HDMI公头加HDMI母头的HDMI线进行延长&#xff0c;或通过网线方式延长&#xff0c;早期为双网线&#xff0c;目前已发展为单网线&#xff0c;需要注意的是&#xff0…

L45 【哈工大_操作系统】操作系统接口 系统调用实现

L4 操作系统接口 本节比较简单&#xff0c;故与第五节课程笔记一起发布。本节主要是研究 上层应用 是怎么穿过边界进入 操作系统。 接口&#xff1a;操作系统提供的重要函数/指令( system call )&#xff0c;用来连接硬件&#xff0c;所以OS接口就是系统调用POSIX&#xff08;…

Res2Net网络

Res2Net网络 摘要Abstract1. Res2Net网络1.1 文献摘要1.2 背景1.3 创新点1.4 网络结构1.5 实验1.5.1 在ImageNet数据集上进行实验1.5.2 在CIFAR数据集上进行实验 2. Res2Net代码实现3. 总结 摘要 Res2Net是一种神经网络架构&#xff0c;旨在改善类似ResNet的网络在计算机视觉任…

vscode开发 vue3+ts 的 uni-app 微信小程序项目

创建uni-app项目&#xff1a; # 创建用ts开发的uni-app npx degit dcloudio/uni-preset-vue#vite-ts 项目名称 # 创建用js开发的uni-app npx degit dcloudio/uni-preset-vue#vite 项目名称VS Code 配置 为什么选择 VS Code &#xff1f; HbuilderX 对 TS 类型支持暂不完善VS…

unity记一下如何播放动画

我使用的版本是2022.3.14fc 展开你的模型树&#xff0c;是会出现这个三角形的东西的 然后在资源面板创建一个animation controller 进去之后&#xff0c;把三角形拖进去&#xff0c;就会出现一个动画&#xff0c;然后点击他 在左侧给他创建这么个状态名字&#xff0c;类型…

AskManyAI:一个GPT、Claude、Gemini、Kimi等顶级AI的决斗场

一直以来很多人问我能不能有个稳定&#xff0c;不折腾的全球AI大模型测试网站&#xff0c;既能够保证真实靠谱&#xff0c;又能够保证稳定、快速&#xff0c;不要老动不动就挂了、出错或者漫长的响应。 直到笔者遇到了AskManyAI&#xff0c;直接就惊艳住了&#xff01; 话不多…

第17天:信息打点-语言框架开发组件FastJsonShiroLog4jSpringBoot等

第十七天 本课意义 1.CMS识别到后期漏洞利用和代码审计 2.开发框架识别到后期漏洞利用和代码审计 3.开发组件识别到后期漏洞利用和代码审计 一、CMS指纹识别-不出网程序识别 1.概念 CMS指纹识别一般能识别到的都是以PHP语言开发的网页为主&#xff0c;其他语言开发的网页识…

springboot-tomcat冲突

maven tomcat版本冲突异常 记录一个错误 在项目启动时报错&#xff1a; java.lang.AbstractMethodError: org.apache.tomcat.websocket.server.WsSessionListener.sessionCreated(Ljavax/servlet/http/HttpSessionEvent;)V 引入Session报错。 原因&#xff1a;Springboot默…

数据仓库—维度建模—维度表设计

维度表 维度表(Dimension Table)是数据仓库中描述业务过程中各种维度信息的表,用于提供上下文和描述性信息,以丰富事实数据的分析 维度表是维度建模的灵魂所在,在维度表设计中碰到的问题(比如维度变化、维度层次、维度一致性、维度整合和拆分等)都会直接关系到维度建模…

基于R语言实现的负二项回归模型【理解与实现】-理解负二项回归模型和泊松回归模型之间的区别

前言 我们可以在R语言中使用MASS包中的glm.nb函数来拟合负二项模型&#xff0c;以及使用glm函数来拟合泊松模型。以下是一个详细的过程&#xff0c;包括模拟数据的生成、模型的拟合、结果的比较和解释。 需要的包 if (!require("MASS")) install.packages("M…

【Leetcode每日一题】 分治 - 颜色分类(难度⭐⭐)(57)

1. 题目解析 题目链接&#xff1a;75. 颜色分类 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 算法思路解析 本算法采用三指针法&#xff0c;将数组划分为三个区域&#xff0c;分别用于存放值为0、1和2的元素。通过…

CentOS 7安装Zookeeper

说明&#xff1a;本文介绍如何在CentOS 7操作系统下使用Zookeeper 下载安装 首先&#xff0c;去官网下载所需要安装的版本&#xff0c;我这里下载3.4.9版本&#xff1b; 上传到云服务器上&#xff0c;解压 tar -xvf zookeeper-3.4.9.tar.gz修改配置 进入Zookeeper目录下的co…

3. 安装arrach结构的Mysql

提示&#xff1a;arm的centos上面安装arrach结构的Mysql 文章目录 前言一、查看已经安装过的并卸载mysql二、创建mysql用户组1.设置用户组2. 安装3.设置启动4.查看密码5.修改登录密码6.授权7.修改连接8.设置参数 常见问题排查1. 启动失败查看&#xff1a;2. 用户操作3. 踩坑解决…

【已开源】​基于stm32f103的爬墙小车

​基于stm32f103的遥控器无线控制爬墙小车&#xff0c;实现功能为可平衡在竖直墙面上&#xff0c;并进行移动和转向&#xff0c;具有超声波防撞功能。 直接上&#xff1a; 演示视频如&#xff1a;哔哩哔哩】 https://b23.tv/BzVTymO 项目说明&#xff1a; 在这个项目中&…

Unity 2D让相机跟随角色移动

相机跟随移动 最简单的方式通过插件Cinemachine 在窗口/包管理器选择全部找到Cinemachine&#xff0c;导入。然后在游戏对象/Cinemachine创建2D Camera。此时层级中创建一个2D相机。选中人物拖入检查器Follow。此时相机跟随人物移动。 修改相机视口距离 在检查器中Lens下调正…

linux学习:文件属性

在操作文件的时候&#xff0c;经常需要获取文件的属性&#xff0c;比如类型、权限、大小、所有者等等&#xff0c; 这些信息对于比如文件的传输、管理等是必不可少的&#xff0c;而这些信息 这三个函数的功能完全一样&#xff0c;区别是&#xff1a;stat( )参数是一个文件的名字…