B02、垃圾回收 算法 概念-6.1

1、概念

1.1、前言

        垃圾收集,不是Java语言的伴生产物。早在1960年,第一门开始使用内存动态分配和垃圾收集技术的Lisp语言诞生。

        垃圾收集机制是Java的招牌能力,极大地提高了开发效率。如今,垃圾收集几乎成为现代语言的标配,即使经过如此长时间的发展,Java的垃圾收集机制仍然在不断的演进中,不同大小的设备、不同特征的应用场景,对垃圾收集提出了新的挑战,这当然也是面试的热点。

1.2、什么是垃圾

        垃圾是指在运行程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾。如果不及时对内存中的垃圾进行清理,那么,这些垃圾对象所占的内存空间会一直保留到应用程序结束,被保留的空间无法被其他对象使用。甚至可能导致内存溢出。

1.3、为什么需要GC

        对于高级语言来说,一个基本认知是如果不进行垃圾回收,内存迟早都会被消耗完,因为不断地分配内存空间而不进行回收,就好像不停地生产生活垃圾而从来不打扫一样。

        除了释放没用的对象,垃圾回收也可以清除内存里的记录碎片。碎片整理将所占用的堆内存移到堆的一端,以便 JVM 将整理出的内存分配给新的对象。随着应用程序所应付的业务越来越庞大、复杂,用户越来越多,没有GC就不能保证应用程序的正常进行。而经常造成STW的GC又跟不上实际的需求,所以才会不断地尝试对GC进行优化。

        另一方面,对于Java开发人员而言,自动内存管理就像是一个黑匣子,如果过度依赖于“自动”,那么这将会是一场灾难,最严重的就会弱化Java开发人员在程序出现内存溢出时定位问题和解决问题的能力。

        此时,了解JVM的自动内存分配和内存回收原理就显得非常重要,只有在真正了解JVM是如何管理内存后,我们才能够在遇见OutOfMemoryError时,快速地根据错误异常日志定位问题和解决问题。

        当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。

1.4、Java中垃圾回收的重点区域是

        垃圾回收器可以对年轻代回收,也可以对老年代回收,甚至是全堆和方法区的回收。其中,Java堆是垃圾收集器的工作重点。从次数上讲:

  • 频繁收集Young区
  • 较少收集Old区
  • 基本不动Perm区(或元空间)

1.5、早期的GC

        在早期的C/C++时代,垃圾回收基本上是手工进行的。开发人员可以使用new关键字进行内存申请,并使用delete关键字进行内存释放。比如以下代码:

        这种方式可以灵活控制内存释放的时间,但是会给开发人员带来频繁申请和释放内存的管理负担。倘若有一处内存区间由于程序员编码的问题忘记被回收,那么就会产生内存泄漏,垃圾对象永远无法被清除,随着系统运行时间的不断增长,垃圾对象所耗内存可能持续上升,直到出现内存溢出并造成应用程序崩溃。在有了垃圾回收机制后,上述代码块极有可能变成这样:

        现在,除了Java以外,C#、Python、Ruby等语言都使用了自动垃圾回收的思想,也是未来发展趋势。可以说,这种自动化的内存分配和垃圾回收的方式己经成为现代开发语言必备的标准。

2、垃圾回收算法

2.1、垃圾判别阶段算法

        在堆里存放着几乎所有的java对象实例,在GC 执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为己经死亡的对象, GC 才会在执行垃圾回收时,释放掉其所占用的内存空间, 因此这个过程我们可以称为垃圾标记阶段

        那么在JVM中究竟是如何标记一个死亡对象呢?简单来说,当一个对象已经不再被任何的存活对象继续引用时,就可以宣判为已经死亡。

2.1.1、引用计数算法

        引用计数算法(Reference Counting)比较简单,对每个对象保存一个整型的引用计数器属性。用于记录对象被引用的情况。

1、原理

        对于一个对象A,只要有任何一个对象引用了A ,则A 的引用计数器就加1,当引用失效时,引用计数器就减1。只要对象A 的引用计数器的值为0,即表示对象A不可能再被使用,可进行回收。

2、优缺点

优点:

        实现简单,垃圾对象便于辨识;判定效率高,回收没有延迟性。

缺点:

缺点1:它需要单独的字段存储计数器,这样的做法增加了存储空间的开销。

缺点2:每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销。

缺点3:引用计数器有一个严重的问题,即无法处理循环引用的情况。这是一条致命缺陷,导致在Java 的垃圾回收器中没有使用这类算法。

3、代码举例
/**
 * -XX:+PrintGCDetails
 */
public class RefCountGC {
    //这个成员属性唯一的作用就是占用一点内存
    private byte[] bigSize = new byte[4 * 1024 * 1024];
    Object reference = null;
    public static void main(String[] args) {
        RefCountGC obj1 = new RefCountGC();
        RefCountGC obj2 = new RefCountGC();

        obj1.reference = obj2;
        obj2.reference = obj1;

        obj1 = null;
        obj2 = null;
        //显式的执行垃圾回收行为
        //这里发生GC,obj1和obj2能否被回收?
        System.gc();
    }
}

        如果一下小心直接把Obj1-reference 和 Obj2-reference 置 null。则在 Java 堆当中的两块内存依然保持着互相引用,无法回收。

4、解决循环引用

        引用计数算法,是很多语言的资源回收选择,例如因人工智能而更加火热的Python,它更是同时支持引用计数和垃圾收集机制。

        具体哪种最优是要看场景的,业界有大规模实践中仅保留引用计数机制,以提高吞吐量的尝试。Java并没有选择引用计数,是因为其存在一个基本的难题,也就是很难处理循环引用关系。

  • 手动解除:很好理解,就是在合适的时机,解除引用关系。
  • 使用弱引用weakref, weakref是Python提供的标准库,旨在解决循环引用。

2.1.2、可达性分析算法

        相对于引用计数算法而言,可达性分析算法不仅同样具备实现简单和执行高效等特点,更重要的是该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生。
        相较于引用计数算法,这里的可达性分析就是Java、C#选择的。这种类型的垃圾收集通常也叫作追踪性垃圾收集(Tracing Garbage Collection)。

1、原理

        其原理简单来说,就是将对象及其引用关系看作一个图,选定活动的对象作为 GC Roots,然后跟踪引用链条,如果一个对象和GC Roots之间不可达,也就是不存在引用链条,那么即可认为是可回收对象。

基本思路:

        可达性分析算法是以根对象集合(GC Roots)为起始点,按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达。

        使用可达性分析算法后,内存中的存活对象都会被根对象集合直接或间接连接着,搜索所走过的路径称为引用链(Reference Chain)。

        如果目标对象没有任何引用链相连,则是不可达的,就意味着该对象己经死亡,可以标记为垃圾对象。在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活对象。

2、优点

        实现简单,执行高效 ,有效的解决循环引用的问题,防止内存泄漏。

3、GC Roots

        在Java 语言中, GC Roots 包括以下几类元素:

  1. 虚拟机栈中引用的对象
    1. 比如:各个线程被调用的方法中使用到的参数、局部变量等。
  2. 本地方法栈内JNI(通常说的本地方法)引用的对象
  3. 类静态属性引用的对象
    1. 比如:Java类的引用类型静态变量
  4. 方法区中常量引用的对象
    1. 比如:字符串常量池(String Table)里的引用
  5. 所有被同步锁synchronized持有的对象
  6. Java虚拟机内部的引用
    1. 基本数据类型对应的Class对象,一些常驻的异常对象(如:NullPointerException、OutOfMemoryError),系统类加载器。
  7. 反映java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

        除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。比如:分代收集和局部回收(Partial GC)。

        如果只针对Java堆中的某一块区域进行垃圾回收(比如:典型的只针对新生代),必须考虑到内存区域是虚拟机自己的实现细节,更不是孤立封闭的,这个区域的对象完全有可能被其他区域的对象所引用,这时候就需要一并将关联的区域对象也加入GC Roots集合中去考虑,才能保证可达性分析的准确性。

小技巧:

        由于Root 采用栈方式存放变量和指针,所以如果一个指针,它保存了堆内存里面的对象,但是自己又不存放在堆内存里面,那它就是一个Root 。

4、注意事项

        如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话分析结果的准确性就无法保证。

        这点也是导致GC进行时必须“Stop The World”的一个重要原因。即使是号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

2.2、垃圾清除阶段算法

        当成功区分出内存中存活对象和死亡对象后, GC 接下来的任务就是执行垃圾回收,释放掉无用对象所占用的内存空间,以便有足够的可用内存空间为新对象分配内存。目前在JVM中比较常见的三种垃圾收集算法是标记-清除算法( Mark-Sweep )、复制算法( Copying )、标记 - 压缩算法( Mark-Compact ) 。

2.2.1、标记-清除算法(Mark - Sweep)

背景:

        标记 - 清除算法( Mark-Sweep )是一种非常基础和常见的垃圾收集算法,该算法被J.McCarthy等人在1960年提出并并应用于Lisp语言。

执行过程:

        当堆中的有效内存空间(available memory)被耗尽的时候,就会停止整个程序(也被称为stop the world),然后进行两项工作,第一项则是标记,第二项则是清除。 

  • 标记:Collector从引用根节点开始遍历,标记所有被引用的对象。一般是在对象的Header中记录为可达对象。
  • 清除:Collector对堆内存从头到尾进行线性的遍历,如果发现某个对象在其Header中没有标记为可达对象,则将其回收

缺点:

1、效率比较低:递归与全堆对象遍历两次

2、在进行GC的时候,需要停止整个应用程序,导致用户体验差

3、这种方式清理出来的空闲内存是不连续的,产生内存碎片。

        特别注意:这里所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里。下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够,就存放。

2.2.2、复制算法

        将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收。

优缺点:

优点:

  • 没有标记和清除过程,实现简单,运行高效
  • 复制过去以后保证空间的连续性,不会出现“碎片”问题。

缺点:

  • 此算法的缺点也是很明显的,就是需要两倍的内存空间。
  • 对于G1这种分拆成为大量region的GC,复制而不是移动,意味着GC需要维护region之间对象引用关系,不管是内存占用或者时间开销也不小。

        此外如果系统中的存活对象很多,复制算法不会很理想。因为复制算法需要复制的存活对象数量并不会太大,或者说非常低才行。

应用场景:

        在新生代,对常规应用的垃圾回收,一次通常可以回收70%-99%的内存空间。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。比如:IBM 公司的专门研究表明,新生代中 80% 的对象都是“朝生夕死”的。

2.2.3、标记-压缩算法

背景:

        复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代,更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法。

        标记-清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且在执行完内存回收后还会产生内存碎片,所以JVM 的设计者需要在此基础之上进行改进。标记 - 压缩(Mark - Compact)算法由此诞生。

执行过程:

        第一阶段和标记-清除算法一样,从根节点开始标记所有被引用对象。第二阶段将所有的存活对象压缩到内存的一端,按顺序排放。之后, 清理边界外所有的空间。

         标记-压缩算法的最终效果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩(Mark-Sweep-Compact)算法。

        二者的本质差异在于标记-清除算法是一种非移动式的回收算法,标记-压缩是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策。

        可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。 

指针碰撞(Bump the Pointer):

        如果内存空间以规整和有序的方式分布,即已用和未用的内存都各自一边,彼此之间维系着一个记录下一次分配起始点的标记指针,当为新对象分配内存时,只需要通过修改指针的偏移量将新对象分配在第一个空闲内存位置上,这种分配方式就叫做指针碰撞(Bump the Pointer)。

优缺点:

优点:(此算法消除了“标记-清除”和“复制”两个算法的弊端。)

  • 消除了标记/清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可。
  • 消除了复制算法当中,内存减半的高额代价。

 
缺点:

  • 从效率上来说,标记-压缩算法要低于复制算法。
    • 效率不高,不仅要标记所有存活对象,还要整理所有存活对象的引用地址。
    • 对于老年代每次都有大量对象存活的区域来说,极为负重。
  • 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址。
  • 移动过程中,需要全程暂停用户应用程序。即:STW

2.2.4、分代收集算法

        效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存。而为了尽量兼顾上面提到的三个指标,标记-整理算法相对来说更平滑一些,但是效率上不尽如人意,它比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段。

        分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收的效率。

        在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

        目前几乎所有的GC都是采用分代收集(Generational Collecting)算法执行垃圾回收的。在HotSpot中,基于分代的概念,GC所使用的内存回收算法必须结合年轻代和老年代各自的特点。

  • 年轻代(Young Gen)

        年轻代特点:区域相对老年代较小,对象生命周期短、存活率低,回收频繁。这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到缓解。

  • 老年代(Tenured Gen)

        老年代特点:区域较大,对象生命周期长、存活率高,回收不及年轻代频繁。这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者是标记-清除与标记-整理的混合实现。

  1. Mark阶段的开销与存活对象的数量成正比。
  2. Sweep阶段的开销与所管理区域的大小成正相关。
  3. Compact阶段的开销与存活对象的数据成正比。

        以HotSpot中的CMS回收器为例,CMS是基于Mark-Sweep实现的,对于对象的回收效率很高。而对于碎片问题,CMS采用基于Mark-Compact算法的Serial Old回收器作为补偿措施:当内存回收不佳(碎片导致的Concurrent Mode Failure时),将采用Serial Old执行Full GC以达到对老年代内存的整理。分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代。

2.2.5、增量收集算法

        上述现有的算法,在垃圾回收过程中,应用软件将处于一种Stop the World 的状态。在Stop the World 状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting)算法的诞生。

基本思想:

        如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成。

        总的来说,增量收集算法的基础仍是传统的标记-清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作。

        缺点是,使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。

2.2.6、分区算法

        分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间。每一个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间。

        一般来说,在相同条件下,堆空间越大,一次GC时所需要的时间就越长,有关GC产生的停顿也越长。为了更好地控制GC产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的停顿。

3、相关概念

3.1、System.gc()

        在默认情况下,通过System.gc()或者Runtime.getRuntime().gc()的调用,会显式触发Full GC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存。

        然而System.gc()调用附带一个免责声明,无法保证对垃圾收集器的调用。JVM实现者可以通过System.gc()调用来决定JVM的GC行为。而一般情况下,垃圾回收应该是自动进行的,无须手动触发,否则就太过于麻烦了。在一些特殊情况下,如我们正在编写一个性能基准,我们可以在运行之间调用System.gc()。

/**
 * 垃圾回收测试
 */
public class SystemGCTest {
    public static void main(String[] args) {
        new SystemGCTest();
        System.gc();
//        Runtime.getRuntime().gc();

        System.runFinalization();
    }

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("SystemGCTest 重写了finalize()");
    }
}

3.2、finalize() 方法详解

        finalize()方法详解,前言,finalize()是Object的protected方法,子类可以覆盖该方法以实现资源清理工作,GC在回收对象之前调用该方法。

3.2.1、finalize 的作用

(1)、finalize() 与 C++ 中的析构函数不是对应的。C++中的析构函数调用的时机是确定的(对象离开作用域或delete掉),但 Java 中的 finalize 的调用具有不确定性

(2)、不建议用finalize方法完成“非内存资源”的清理工作,但建议用于:

  1. 清理本地对象(通过JNI创建的对象);
  2. 作为确保某些非内存资源(如Socket、文件等)释放的一个补充:在finalize方法中显式调用其他资源释放方法。

3.2.2、finalize 的问题

  1. 一些与finalize相关的方法,由于一些致命的缺陷,已经被废弃了,如System.runFinalizersOnExit()方法、Runtime.runFinalizersOnExit()方法
  2. System.gc()与System.runFinalization()方法增加了finalize方法执行的机会,但不可盲目依赖它们
  3. Java语言规范并不保证finalize方法会被及时地执行、而且根本不会保证它们会被执行
  4. finalize方法可能会带来性能问题。因为JVM通常在单独的低优先级线程中完成finalize的执行
  5. 对象再生问题:finalize方法中,可将待回收对象赋值给GC Roots可达的对象引用,从而达到对象再生的目的
  6. finalize方法至多由GC执行一次(用户当然可以手动调用对象的finalize方法,但并不影响GC对finalize的行为)

3.2.3、finalize 的生命周期

        首先,大致描述一下finalize流程:当对象变成(GC Roots)不可达时,GC会判断该对象是否覆盖了finalize方法,若未覆盖,则直接将其回收。否则,若对象未执行过finalize方法,将其放入F-Queue队列,由一低优先级线程执行该队列中对象的finalize方法。执行finalize方法完毕后,GC会再次判断该对象是否可达,若不可达,则进行回收,否则,对象“复活”

        对象可由两种状态,涉及到两类状态空间,一是终结状态空间 F = {unfinalized, finalizable, finalized};二是可达状态空间 R = {reachable, finalizer-reachable, unreachable}。各状态含义如下:

  • unfinalized:新建对象会先进入此状态,GC并未准备执行其finalize方法,因为该对象是可达的
  • finalizable:表示GC可对该对象执行finalize方法,GC已检测到该对象不可达。正如前面所述,GC通过F-Queue队列和一专用线程完成finalize的执行
  • finalized:表示GC已经对该对象执行过finalize方法
  • reachable:表示GC Roots引用可达
  • finalizer-reachable(f-reachable):表示不是reachable,但可通过某个finalizable对象可达
  • unreachable:对象不可通过上面两种途径可达

  1. 新建对象首先处于[reachable, unfinalized]状态(A)
  2. 随着程序的运行,一些引用关系会消失,导致状态变迁,从reachable状态变迁到f-reachable(B, C, D)或unreachable(E, F)状态
  3. 若JVM检测到处于unfinalized状态的对象变成f-reachable或unreachable,JVM会将其标记为finalizable状态(G,H)。若对象原处于[unreachable, unfinalized]状态,则同时将其标记为f-reachable(H)。
  4. 在某个时刻,JVM取出某个finalizable对象,将其标记为finalized并在某个线程中执行其finalize方法。由于是在活动线程中引用了该对象,该对象将变迁到(reachable, finalized)状态(K或J)。该动作将影响某些其他对象从f-reachable状态重新回到reachable状态(L, M, N)
  5. 处于finalizable状态的对象不能同时是unreahable的,由第4点可知,将对象finalizable对象标记为finalized时会由某个线程执行该对象的finalize方法,致使其变成reachable。这也是图中只有八个状态点的原因
  6. 程序员手动调用finalize方法并不会影响到上述内部标记的变化,因此JVM只会至多调用finalize一次,即使该对象“复活”也是如此。程序员手动调用多少次不影响JVM的行为
  7. 若JVM检测到finalized状态的对象变成unreachable,回收其内存(I)
  8. 若对象并未覆盖finalize方法,JVM会进行优化,直接回收对象(O)
  9. 注:System.runFinalizersOnExit()等方法可以使对象即使处于reachable状态,JVM仍对其执行finalize方法

3.3、内存泄漏与内存溢出

3.3.1、内存溢出

        内存溢出相对于内存泄漏来说,尽管更容易被理解,但是同样的,内存溢出也是引发程序崩溃的罪魁祸首之一。由于GC一直在发展,所有一般情况下,除非应用程序占用的内存增长速度非常快,造成垃圾回收已经跟不上内存消耗的速度,否则不太容易出现OOM的情况。

        大多数情况下,GC会进行各种年龄段的垃圾回收,实在不行了就放大招,来一次独占式的Full GC操作,这时候会回收大量的内存,供应用程序继续使用。javadoc中对OutOfMemoryError的解释是,没有空闲内存,并且垃圾收集器也无法提供更多内存。

1、内存不够的原因?

        首先说没有空闲内存的情况:说明Java虚拟机的堆内存不够。原因有二:

(1)、Java虚拟机的堆内存设置不够。

        比如:可能存在内存泄漏问题;也很有可能就是堆的大小不合理,比如我们要处理比较可观的数据量,但是没有显式指定JVM堆大小或者指定数值偏小。我们可以通过参数-Xms、-Xmx来调整。

(2)、代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)

        对于老版本的Oracle JDK,因为永久代的大小是有限的,并且JVM对永久代垃圾回收(如,常量池回收、卸载不再需要的类型)非常不积极,所以当我们不断添加新类型的时候,永久代出现OutOfMemoryError也非常多见,尤其是在运行时存在大量动态类型生成的场合;类似intern字符串缓存占用太多空间,也会导致OOM问题。对应的异常信息, 会标记出来和永久代相关:“java.lang.OutOfMemoryError: PermGen space”。

        随着元数据区的引入,方法区内存已经不再那么窘迫,所以相应的OOM有所改观,出现OOM,异常信息则变成了:“java.lang.OutOfMemoryError: Metaspace”。直接内存不足,也会导致OOM。

2、OOM前一定有GC?

        这里面隐含着一层意思是,在抛出OutOfMemoryError之前,通常垃圾收集器会被触发,尽其所能去清理出空间。例如:在引用机制分析中,涉及到JVM会去尝试回收软引用指向的对象等。在java.nio.BIts.reserveMemory()方法中,我们能清楚的看到,System.gc()会被调用,以清理空间。

        当然,也不是在任何情况下垃圾收集器都会被触发的。比如,我们去分配一个超大对象,类似一个超大数组超过堆的最大值,JVM可以判断出垃圾收集并不能解决这个问题,所以直接抛出OutOfMemoryError。

3.3.2、内存泄漏

1、什么是内存泄漏

        也称作“存储渗漏”。严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致OOM,也可以叫做宽泛意义上的“内存泄漏”。

         对象 X 引用对象 Y,X 的生命周期比 Y 的生命周期长;那么当Y生命周期结束的时候,X依然引用着Y,这时候,垃圾回收期是不会回收对象Y的;如果对象X还引用着生命周期比较短的A、B、C,对象A又引用着对象 a、b、c,这样就可能造成大量无用的对象不能被回收,进而占据了内存资源,造成内存泄漏,直到内存溢出。

        尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现OutOfMemory异常,导致程序崩溃。

        注意,这里的存储空间并不是指物理内存,而是指虚拟内存大小,这个虚拟内存大小取决于磁盘交换区设定的大小。

        可达性分析算法来判断对象是否是不再使用的对象,本质都是判断一个对象是否还被引用。那么对于这种情况下,由于代码的实现不同就会出现很多种内存泄漏问题(让JVM误以为此对象还在引用中,无法回收,造成内存泄漏)。

2、内存泄漏与内存溢出的关系

1. 内存泄漏(memory leak )
        申请了内存用完了不释放,比如一共有 1024M 的内存,分配了 512M 的内存一直不回收,那么可以用的内存只有 512M 了,仿佛泄露掉了一部分;通俗一点讲的话,内存泄漏就是【占着茅坑不拉shi】。
 
2. 内存溢出(out of memory)
        申请内存时,没有足够的内存可以使用;通俗一点儿讲,一个厕所就三个坑,有两个站着茅坑不走的(内存泄漏),剩下最后一个坑,厕所表示接待压力很大,这时候一下子来了两个人,坑位(内存)就不够了,内存泄漏变成内存溢出了。可见,内存泄漏和内存溢出的关系:内存泄漏的增多,最终会导致内存溢出。

3、内存泄漏的分类
  • 经常发生:发生内存泄露的代码会被多次执行,每次执行,泄露一块内存;
  • 偶然发生:在某些特定情况下才会发生;
  • 一次性:发生内存泄露的方法只会执行一次;
  • 隐式泄漏:一直占着内存不释放,直到执行结束;严格的说这个不算内存泄漏,因为最终释放掉了,但是如果执行时间特别长,也可能会导致内存耗尽。

3.3.3、Java中内存泄漏的八种情况

1、静态集合类

        静态集合类,如HashMap、LinkedList等等。如果这些容器为静态的,那么它们的生命周期与JVM程序一致,则容器中的对象在程序结束之前将不能被释放,从而造成内存泄漏。简单而言,长生命周期的对象持有短生命周期对象的引用,尽管短生命周期的对象不再使用,但是因为长生命周期对象持有它的引用而导致不能被回收

public class MemoryLeak {
    static List list = new ArrayList();

    public void oomTests() {
        Object obj = new Object();//局部变量
        list.add(obj);
    }
}
2、单例模式

        单例模式,和静态集合导致内存泄露的原因类似,因为单例的静态特性,它的生命周期和 JVM 的生命周期一样长,所以如果单例对象如果持有外部对象的引用那么这个外部对象也不会被回收,那么就会造成内存泄漏

3、内部类持有外部类

        内部类持有外部类,如果一个外部类的实例对象的方法返回了一个内部类的实例对象。这个内部类对象被长期引用了,即使那个外部类实例对象不再被使用,但由于内部类持有外部类的实例对象,这个外部类对象将不会被垃圾回收,这也会造成内存泄漏。

public class HandlerDemoActivity extends Activity implements OnClickListener {
 
  private static final int MESSAGE_INCRESE = 0;
  private static final int MESSAGE_DECRESE = 1;
  private TextView tv_demo_number;
  private Button btn_demo_increase;
  private Button btn_demo_decrease;
  private Button btn_demo_pause;
  
  private Handler handler = new Handler(){
     //回调方法
     public void handleMessage(android.os.Message msg) {
       String strNum = tv_demo_number.getText().toString();
       //转换为整型数据,获取当前显示的数值
       int num = Integer.parseInt(strNum);
       
       switch(msg.what){
       case MESSAGE_INCRESE:
          num++;
          tv_demo_number.setText(num + "");
          
          if(num == 20){
            Toast.makeText(HandlerDemoActivity.this, "已达到最大值", 0).show();
            btn_demo_pause.setEnabled(false);
            return;
          }
          
          //发送延迟的+1的消息
          sendEmptyMessageDelayed(MESSAGE_INCRESE, 300);//指的是延迟处理,而不是延迟发送
          
          break;
       case MESSAGE_DECRESE:
          num--;
          tv_demo_number.setText(num + "");
          
          
          if(num == 0){
            Toast.makeText(HandlerDemoActivity.this, "已达到最小值", 0).show();
            btn_demo_pause.setEnabled(false);
            return;
          }
          
          //发送延迟的-1的消息
          sendEmptyMessageDelayed(MESSAGE_DECRESE, 300);//指的是延迟处理,而不是延迟发送
          
          break;
       }
       
     }
  };
  
  @Override
  protected void onCreate(Bundle savedInstanceState) {
     super.onCreate(savedInstanceState);
     setContentView(R.layout.activity_handler_demo);
     init();
  }
 
  
  private void init() {
     tv_demo_number = (TextView) findViewById(R.id.tv_demo_number);
     btn_demo_increase = (Button) findViewById(R.id.btn_demo_increase);
     btn_demo_decrease = (Button) findViewById(R.id.btn_demo_decrease);
     btn_demo_pause = (Button) findViewById(R.id.btn_demo_pause);
     
     btn_demo_increase.setOnClickListener(this);
     btn_demo_decrease.setOnClickListener(this);
     btn_demo_pause.setOnClickListener(this);
     
     
  }
 
  @Override
  public void onClick(View v) {
     //....
  }
}
4、各种连接

        各种连接,如数据库连接、网络连接和IO连接等。在对数据库进行操作的过程中,首先需要建立与数据库的连接,当不再使用时,需要调用close方法来释放与数据库的连接。只有连接被关闭后,垃圾回收器才会回收对应的对象。

        否则,如果在访问数据库的过程中,对Connection、Statement或ResultSet不显性地关闭,将会造成大量的对象无法被回收,从而引起内存泄漏。

public static void main(String[] args) {
    try {
        Connection conn = null;
        Class.forName("com.mysql.jdbc.Driver");
        conn = DriverManager.getConnection("url", "", "");
        Statement stmt = conn.createStatement();
        ResultSet rs = stmt.executeQuery("....");
    } catch (Exception e) { //异常日志
    
    } finally {   
        //1.关闭结果集 Statement   
        // 2.关闭声明的对象 ResultSet   
        // 3.关闭连接 Connection
    }
}
5、变量不合理的作用域

        变量不合理的作用域。一般而言,一个变量的定义的作用范围大于其使用范围,很有可能会造成内存泄漏。另一方面,如果没有及时地把对象设置为null,很有可能导致内存泄漏的发生。

public class UsingRandom {
     private String msg;
     public void receiveMsg(){
        //private String msg;
        readFromNet();// 从网络中接受数据保存到msg中
        saveDB();// 把msg保存到数据库中
        //msg = null;
     }
}

        如上面这个伪代码,通过readFromNet方法把接受的消息保存在变量msg中,然后调用saveDB方法把msg的内容保存到数据库中,此时msg已经就没用了,由于msg的生命周期与对象的生命周期相同,此时msg还不能回收,因此造成了内存泄漏。

        实际上这个msg变量可以放在receiveMsg方法内部,当方法使用完,那么msg的生命周期也就结束,此时就可以回收了。还有一种方法,在使用完msg后,把msg设置为null,这样垃圾回收器也会回收msg的内存空间。

6、改变哈希值

        改变哈希值,当一个对象被存储进HashSet集合中以后,就不能修改这个对象中的那些参与计算哈希值的字段了。

        否则,对象修改后的哈希值与最初存储进HashSet集合中时的哈希值就不同了,在这种情况下,即使在contains方法使用该对象的当前引用作为的参数去HashSet集合中检索对象,也将返回找不到对象的结果,这也会导致无法从HashSet集合中单独删除当前对象,造成内存泄漏

        这也是 String 为什么被设置成了不可变类型,我们可以放心地把 String 存入 HashSet,或者把 String 当做 HashMap 的 key 值;当我们想把自己定义的类保存到散列表的时候,需要保证对象的 hashCode 不可变。

/**
 * 演示内存泄漏
 */
 
public class ChangeHashCode {
    public static void main(String[] args) {
        HashSet set = new HashSet();
        Person p1 = new Person(1001, "AA");
        Person p2 = new Person(1002, "BB");

        set.add(p1);
        set.add(p2);
        p1.name = "CC";
        set.remove(p1);
        System.out.println(set);//2个对象!
        
//        set.add(new Person(1001, "CC"));
//        System.out.println(set);
//        set.add(new Person(1001, "AA"));
//        System.out.println(set);

    }
}

class Person {
    int id;
    String name;

    public Person(int id, String name) {
        this.id = id;
        this.name = name;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (!(o instanceof Person)) return false;

        Person person = (Person) o;

        if (id != person.id) return false;
        return name != null ? name.equals(person.name) : person.name == null;
    }

    @Override
    public int hashCode() {
        int result = id;
        result = 31 * result + (name != null ? name.hashCode() : 0);
        return result;
    }

    @Override
    public String toString() {
        return "Person{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }
}

示例二:

/**
 * 演示内存泄漏
 */
public class ChangeHashCode1 {
    public static void main(String[] args) {
        HashSet<Point> hs = new HashSet<Point>();
        Point cc = new Point();
        cc.setX(10);//hashCode = 41
        hs.add(cc);
        cc.setX(20);//hashCode = 51
        System.out.println("hs.remove = " + hs.remove(cc));//false
        hs.add(cc);
        System.out.println("hs.size = " + hs.size());//size = 2
    }

}

class Point {
    int x;

    public int getX() {
        return x;
    }

    public void setX(int x) {
        this.x = x;
    }

    @Override
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        result = prime * result + x;
        return result;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) return true;
        if (obj == null) return false;
        if (getClass() != obj.getClass()) return false;
        Point other = (Point) obj;
        if (x != other.x) return false;
        return true;
    }
}
7、缓存泄漏

        内存泄漏的另一个常见来源是缓存,一旦你把对象引用放入到缓存中,他就很容易遗忘。比如:之前项目在一次上线的时候,应用启动奇慢直到夯死,就是因为代码中会加载一个表中的数据到缓存(内存)中,测试环境只有几百条数据,但是生产环境有几百万的数据。

        对于这个问题,可以使用WeakHashMap代表缓存,此种Map的特点是,当除了自身有对key的引用外,此key没有其他引用那么此map会自动丢弃此值。

/**
 * 演示内存泄漏
 */
public class MapTest {
    static Map wMap = new WeakHashMap();
    static Map map = new HashMap();

    public static void main(String[] args) {
        init();
        testWeakHashMap();
        testHashMap();
    }

    public static void init() {
        String ref1 = new String("obejct1");
        String ref2 = new String("obejct2");
        String ref3 = new String("obejct3");
        String ref4 = new String("obejct4");
        wMap.put(ref1, "cacheObject1");
        wMap.put(ref2, "cacheObject2");
        map.put(ref3, "cacheObject3");
        map.put(ref4, "cacheObject4");
        System.out.println("String引用ref1,ref2,ref3,ref4 消失");

    }

    public static void testWeakHashMap() {

        System.out.println("WeakHashMap GC之前");
        for (Object o : wMap.entrySet()) {
            System.out.println(o);
        }
        try {
            System.gc();
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("WeakHashMap GC之后");
        for (Object o : wMap.entrySet()) {
            System.out.println(o);
        }
    }

    public static void testHashMap() {
        System.out.println("HashMap GC之前");
        for (Object o : map.entrySet()) {
            System.out.println(o);
        }
        try {
            System.gc();
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("HashMap GC之后");
        for (Object o : map.entrySet()) {
            System.out.println(o);
        }
    }

}


/**
 * 结果
 * String引用ref1,ref2,ref3,ref4 消失
 * WeakHashMap GC之前
 * obejct2=cacheObject2
 * obejct1=cacheObject1
 * WeakHashMap GC之后
 * HashMap GC之前
 * obejct4=cacheObject4
 * obejct3=cacheObject3
 * Disconnected from the target VM, address: '127.0.0.1:51628', transport: 'socket'
 * HashMap GC之后
 * obejct4=cacheObject4
 * obejct3=cacheObject3
 **/

        上面代码和图示主演演示WeakHashMap如何自动释放缓存对象,当init函数执行完成后,局部变量字符串引用weakd1,weakd2,d1,d2都会消失,此时只有静态map中保存中对字符串对象的引用,可以看到,调用gc之后,HashMap的没有被回收,而WeakHashMap里面的缓存被回收了。

8、监听器和回调

        内存泄漏另一个常见来源是监听器和其他回调,如果客户端在你实现的API中注册回调,却没有显式的取消,那么就会积聚。

        需要确保回调立即被当作垃圾回收的最佳方法是只保存它的弱引用,例如将他们保存成为WeakHashMap中的键。

3.4、STW

        Stop-the-World ,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。

        可达性分析算法中枚举根节点(GC Roots)会导致所有Java执行线程停顿。

  • 分析工作必须在一个能确保一致性的快照中进行
  • 一致性指整个分析期间整个执行系统看起来像被冻结在某个时间点上
  • 如果出现分析过程中对象引用关系还在不断变化,则分析结果的准确性无法保证

        被STW中断的应用程序线程会在完成GC之后恢复,频繁中断会让用户感觉像是网速不快造成电影卡带一样,所以我们需要减少STW的发生。STW事件和采用哪款GC无关,所有的GC都有这个事件。

        哪怕是G1也不能完全避免Stop-the-world 情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。

        开发中不要用System.gc();会导致Stop-the-world的发生。

3.5、垃圾回收的并行与并发

3.5.1、关于并发

        在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理器上运行。

        并发不是真正意义上的“同时进行”,只是CPU把一个时间段划分成几个时间片段(时间区间),然后在这几个时间区间之间来回切换,由于CPU处理的速度非常快,只要时间间隔处理得当,即可让用户感觉是多个应用程序同时在进行。

3.5.2、关于并行

        当系统有一个以上CPU时,当一个CPU执行一个进程时,另一个CPU可以执行另一个进程,两个进程互不抢占CPU资源,可以同时进行,我们称之为并行(Parallel)。

        其实决定并行的因素不是CPU的数量,而是CPU的核心数量,比如一个CPU多个核也可以并行。适合科学计算,后台处理等弱交互场景。

3.5.3、两者对比

并发,指的是多个事情,在同一时间段内同时发生了。 
并行,指的是多个事情,在同一时间点上同时发生了

        并发的多个任务之间是互相抢占资源的。并行的多个任务之间是不互相抢占资源的。只有在多CPU或者一个CPU多核的情况中,才会发生并行。否则,看似同时发生的事情,其实都是并发执行的。

        并发和并行,在谈论垃圾收集器的上下文语境中,它们可以解释如下: 

并行(Parallel):

        指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。如ParNew、Parallel Scavenge、Parallel Old;

串行(Serial):

        相较于并行的概念,单线程执行。如果内存不够,则程序暂停,启动JVM垃圾回收器进行垃圾回收。回收完,再启动程序的线程。

并发(Concurrent):

        指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),垃圾回收线程在执行时不会停顿用户程序的运行。用户程序在继续运行,而垃圾收集程序线程运行于另一个CPU上;如:CMS、G1

3.6、安全点与安全区域

3.6.1、安全点(Safepoint)

        程序执行时并非在所有地方都能停顿下来开始 GC,只有在特定的位置才能停顿下来开始GC,这些位置称为“安全点(Safepoint)”。

        Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据“是否具有让程序长时间执行的特征”为标准。比如:选择一些执行时间较长的指令作为Safe Point,如方法调用、循环跳转和异常跳转等。

如何在GC发生时,检查所有线程都跑到最近的安全点停顿下来呢?

  • 抢先式中断:(目前没有虚拟机采用了)

        首先中断所有线程。如果还有线程不在安全点,就恢复线程,让线程跑到安全点。

  • 主动式中断:

        设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。

3.6.2、安全区域(Safe Region)

        Safepoint 机制保证了程序执行时,在不太长的时间内就会遇到可进入 GC 的 Safepoint 。但是,程序“不执行”的时候呢?例如线程处于 Sleep 状态或 Blocked 状态,这时候线程无法响应 JVM 的中断请求,“走”到安全点去中断挂起,JVM 也不太可能等待线程被唤醒。对于这种情况,就需要安全区域(Safe Region)来解决。

        安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始GC都是安全的。我们也可以把 Safe Region 看做是被扩展了的 Safepoint。

实际执行时:

  1. 当线程运行到Safe Region的代码时,首先标识已经进入了Safe Region,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的线程;
  2. 当线程即将离开Safe Region时,会检查JVM是否已经完成GC,如果完成了,则继续运行,否则线程必须等待直到收到可以安全离开Safe Region的信号为止;

3.7、5种引用

        在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱

        除强引用外,其他3种引用均可以在java.lang.ref包中找到它们的身影。如下图,显示了这3种引用类型对应的类,开发人员可以在应用程序中直接使用它们。

        Reference子类中只有终结器引用是包内可见的,其他3种引用类型均为public,可以在应用程序中直接使用。

  • 强引用(StrongReference):最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。   
  • 软引用(SoftReference):在系统将要发生内存溢出之前,将会把这些对象列入回收范围之中进行第二次回收。如果这次回收后还没有足够的内存,才会抛出内存溢出异常。
  • 弱引用(WeakReference):被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。
  • 虚引用(PhantomReference):一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知

3.7.1、强引用:不回收

        在Java程序中,最常见的引用类型是强引用(普通系统99%以上都是强引用),也就是我们最常见的普通对象引用,也是默认的引用类型。当在Java语言中使用new操作符创建一个新的对象,并将其赋值给一个变量的时候,这个变量就成为指向该对象的一个强引用。

        强引用的对象是可触及的,垃圾收集器就永远不会回收掉被引用的对象。对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为null,就是可以当做垃圾被收集了,当然具体回收时机还是要看垃圾收集策略。

        相对的, 软引用、弱引用和虚引用的对象是软可触及、弱可触及和虚可触及的,在一定条件下,都是可以被回收的。所以,强引用是造成Java内存泄漏的主要原因之一

强引用示例:

StringBuffer str = new StringBuffer ("Hello,Java程序员");

        局部变量str指向StringBuffer实例所在堆空间,通过str可以操作该实例, 那么str就是StringBuffer实例的强引用。对应内存结构:

        此时,如果再运行一个赋值语句:

StringBuffer str1 = str;

        对应内存结构:

        本例中的两个引用,都是强引用,强引用具备以下特点:

  • 强引用可以直接访问目标对象。
  • 强引用所指向的对象在任何时候都不会被系统回收,虚拟机宁愿抛出OOM异常,也不会回收强引用所指向对象。
  • 强引用可能导致内存泄漏。

3.7.2、软引用:内存不足即回收

        软引用是用来描述一些还有用,但非必需的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。

        软引用通常用来实现内存敏感的缓存。比如:高速缓存就有用到软引用。如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。

        垃圾回收器在某个时刻决定回收软可达的对象的时候,会清理软引用,并可选地把引用存放到一个引用队列(Reference Queue)。类似弱引用,只不过Java虚拟机会尽量让软引用的存活时间长一些,迫不得已才清理。

        在JDK 1.2版之后提供了java.lang.ref.SoftReference类来实现软引用。

Object obj = new Object(); //声明强引用
 
SoftReference<Object> sf = new SoftReference<Object>(obj);
 
obj = null; //销毁强引用

3.7.3、弱引用:发现即回收

        弱引用也是用来描述那些非必需对象,只被弱引用关联的对象只能生存到下一次垃圾收集发生为止。在系统GC时,只要发现弱引用,不管系统堆空间使用是否充足,都会回收掉只被弱引用关联的对象。

        但是,由于垃圾回收器的线程通常优先级很低,因此, 并不一定能很快地发现持有弱引用的对象。在这种情况下,弱引用对象可以存在较长的时间。弱引用和软引用一样,在构造弱引用时,也可以指定一个引用队列,当弱引用对象被回收时,就会加入指定的引用队列,通过这个队列可以跟踪对象的回收情况。

        弱引用非常适合来保存那些可有可无的缓存数据。如果这么做,当系统内存不足时,这些缓存数据会被回收,不会导致内存溢出。而当内存资源充足时,这些缓存数据又可以存在相当长的时间,从而起到加速系统的作用。在JDK 1.2版之后提供了java.lang.ref.WeakReference类来实现弱引用。 

Object obj = new Object(); //声明强引用
 
WeakReference<Object> wr = new WeakReference<Object>(obj);
 
obj = null; //销毁强引用

        弱引用对象与软引用对象的最大不同就在于,当GC在进行回收时,需要通过算法检查是否回收软引用对象,而对于弱引用对象,GC总是进行回收。弱引用对象更容易、更快被GC回收。

3.7.4、虚引用:对象回收跟踪

        也称为“幽灵引用”或者“幻影引用”,是所有引用类型中最弱的一个。一个对象是否有虚引用的存在,完全不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它和没有引用几乎是一样的,随时都可能被垃圾回收器回收。

        它不能单独使用,也无法通过虚引用来获取被引用的对象。当试图通过虚引用的get()方法取得对象时,总是null。为一个对象设置虚引用关联的唯一目的在于跟踪垃圾回收过程。比如:能在这个对象被收集器回收时收到一个系统通知

  • 虚引用必须和引用队列一起使用。虚引用在创建时必须提供一个引用队列作为参数。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象后,将这个虚引用加入引用队列,以通知应用程序对象的回收情况。
  • 由于虚引用可以跟踪对象的回收时间,因此,也可以将一些资源释放操作放置在虚引用中执行和记录。
  • 在JDK 1.2版之后提供了PhantomReference类来实现虚引用。
Object obj = new Object();
ReferenceQueue phantomQueue = new ReferenceQueue();
PhantomReference<Object> pf = new PhantomReference<Object>(obj, phantomQueue);
obj = null;

3.7.5、终结器引用

        它用以实现对象的finalize()方法,也可以称为终结器引用。无需手动编码,其内部配合引用队列使用。在GC时,终结器引用入队。由Finalizer线程通过终结器引用找到被引用对象并调用它的finalize()方法,第二次GC时才能回收被引用对象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/543349.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

系统架构最佳实践 -- 一般优惠券思想和方案

1.优惠券系统的核心思想 默认的优惠券系统&#xff1a;根据运营人员设定的条件生成对应的优惠券模板、 优惠券码的要求:唯一性和有一定的识别性 优惠券码的格式&#xff08;一共18位&#xff09;&#xff1a;产品线类型&#xff08;前四位&#xff09;日期随机码&#xff08;中…

大模型应用工具 LangChain 入门书籍: LangChain 简明讲义

书籍信息 书名&#xff1a;《LangChain 简明讲义&#xff1a;从 0 到 1 构建 LLM 应用程序》出版社&#xff1a;电子工业出版社书籍链接&#xff1a;https://item.jd.com/14105705.html书籍配套代码&#xff1a;https://github.com/kebijuelun/langchain_book 书籍背景 计算机…

道可云文旅元宇宙平台:全面赋能文旅产业数字化转型

随着科技的迅猛发展&#xff0c;元宇宙、人工智能和虚拟数字人等技术逐渐成为推动社会进步的重要力量。在这一背景下&#xff0c;道可云文旅元宇宙平台以其独特的创新理念和前沿技术&#xff0c;为数字文博领域带来了革命性的变革。 道可云文旅元宇宙平台运用先进的元宇宙、人…

vue 上传csv文件

index---------主页面&#xff08;图1&#xff09; form-----------子页面&#xff08;图2&#xff09; index.vue /** 重点&#xff01;&#xff01;&#xff01;&#xff01; * 获取表单组件传递的信息&#xff0c;传给后端接口 * param {从form表单传递的数据} datas * Fi…

Java调用http接口的几种方式(HttpURLConnection、OKHttp、HttpClient、RestTemplate)

Java作为后端语言是开发接口实现功能供客户端调用接口&#xff0c;这些客户端中最主要是本项目的前端&#xff1b;但有时候也需要Java请求其他的接口&#xff0c;比如需要长连接转短链接&#xff08;请求百度的一个接口可以实现&#xff09;、获取三方OSS签名、微信小程序签名、…

SpringCloudalibaba之Nacos的配置管理

Nacos的配置管理 放个妹子能增加访问量&#xff1f; 动态配置服务 动态配置服务可以让您以中心化、外部化和动态化的方式管理所有环境的应用配置和服务配置。 动态配置消除了配置变更时重新部署应用和服务的需要&#xff0c;让配置管理变得更加高效和敏捷。 配置中心化管…

基于ssm的智慧餐厅点餐管理系统设计与实现(java项目+文档+元)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的智慧餐厅点餐管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 智慧餐厅点餐管理系统设计…

寻找好用项目管理软件?你需要知道的关键信息

项目管理的目标就是确保项目高质量的交付&#xff0c;有了项目管理软件让这一切变得不再是难事。项目管理软件哪家好&#xff1f;好用的项目管理软件是什么样的&#xff1f;1.易于集成现有系统、2.灵活定制、3.性价比高、4.支持任务流程自动化。 一、易于集成——丰富场景 为了…

MGRE环境下运行OSPF

一、分析要求 自行定义公网网段和私有网段&#xff0c;ISP设备仅配置IP地址R1/R4/R5构建Full-Mesh结构R1/R2/R3构建Hub-Spoke结构&#xff0c;R1为NHS除ISP设备&#xff0c;其余路由器运行OSPF 二、实施过程 1. 配置IP及环回地址 R1 [R1]int g 0/0/0 [R1-GigabitEthernet0/…

MuseV:不限视频时长的AI视频生成工具

在不久前 OpenAI Sora 以其优秀且惊人的视频生成效果迅速走红&#xff0c;更是在一众文生视频模型中脱颖而出&#xff0c;成为了文生视频领域的领头羊。 同时它也推动了行业内文生视频技术的发展。今天小编为大家分享一款新开源的文生视频项目MuseV&#xff0c;据说可以生成不…

什么是 MVVM、mvc 模型

mvc模型 MVC: MVC 即 model-view-controller&#xff08;模型-视图-控制器)是项目的一种分层架构思想&#xff0c;它把复杂的业务逻辑&#xff0c; 抽离为职能单一的小模块&#xff0c;每个模块看似相互独立&#xff0c;其实又各自有相互依赖关系。它的好处是&#xff1a;保证了…

笔记83:二叉树前中后序遍历(迭代法 + 栈)

题目1&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目2&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目3&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 注意1&#xff1a;每种遍历方式我都提供了两种方法&#xff0c;带图解的方法为个人尝…

技术周刊的转变:如何平衡热爱与现实?

大家好&#xff0c;我是那个自己打脸自己的猫哥&#xff0c;本来说周刊不做订阅制的&#xff0c;现在却推出了订阅专栏。今天想为自己辩护一下&#xff0c;同时聊聊技术周刊今后的发展计划。 首先回顾一下我过去的想法吧&#xff0c;然后再解释为什么会突然出现转变。 出于对…

Elasticsearch中父子文档的关联:利用Join类型赋予文档的层级关系

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! Elasticsearch是一个强大的搜索引擎&#xff0c;它提供了丰富的功能来满足复杂的搜索需求。其中&#xff0c;父子索引类型的join功…

伺服系统中电机磁极偏角自学习的实现方案

一、 电机磁极偏角自学习原理简述 要知道磁极偏角&#xff0c;首先要明确的是磁极角&#xff0c;在我个人的理解里磁极角就是park和Ipark变换里所需的电角度&#xff0c;我们的矢量控制方法是定磁链的&#xff0c;就是要保证两相同步旋转坐标系的Id轴和三相静止坐标系的A轴要重…

自定义多数据源

多数据源 第一章 自定义多数据源 文章目录 多数据源前言一、先在配置文件中配置好多个数据源二、配置数据源的配置文件三、定义动态数据源配置1、自定义了Datasource&#xff0c;主要目的是为了在Spring容器中定义一个datasource的Bean&#xff0c;用于mybtais获取数据库连接使…

kali工具----网络映射器(Network Mapper)

识别活跃的主机 尝试渗透测试之前&#xff0c;必须先识别在这个目标网络内活跃的主机。在一个目标网络内&#xff0c;最简单的方法将是执行ping命令。当然&#xff0c;它可能被一个主机拒绝&#xff0c;也可能被接收。本节将介绍使用Nmap工具识别活跃的主机。 1、网络映射器工具…

【迅为iTOP-4412-linux 系统制作(4)】ADB 或者 TF 卡烧写测试

准备工作 编译生成的内核镜像uImage 和设备树 dtb 文件“exynos4412-itop-elite.dtb”已经可以使用了。 把编译生成的uimage和dtb文件。拷贝fastboot工具。官方的u-boot-iTOP-4412.bin 也拷贝到 platform-tools 文件夹目录内。system.img 也拷贝到 platform-tools 文件夹目录…

【Java EE】 IoC详解(Bean的存储)

文章目录 &#x1f38d;Controller&#xff08;控制器存储&#xff09;&#x1f338;如何从Spring容器中获取对象&#xff08;ApplicationContext&#xff09;&#x1f338;获取bean对象的其他方式&#xff08;BeanFactory&#xff09;&#x1f338;Bean 命名约定&#x1f338;…

[ROS 系列学习教程] 建模与仿真 - Gazebo 与 URDF 建模介绍

ROS 系列学习教程(总目录) 本文目录 一、Gazebo 介绍二、URDF 建模介绍2.1 一个简单的实体2.2 rivz显示URDF模型2.3 保存与加载rviz配置2.4 launch文件快速启动2.5 package结构 由于种种原因&#xff0c;有时我们不能直接使用真实的机器人进行调试&#xff0c;这时就需要对机器…