27 用linprog、fmincon求 解线性规划问题(matlab程序)

1.简述

      


① linprog函数:
 求解线性规划问题,求目标函数的最小值,

[x,y]= linprog(c,A,b,Aeq,beq,lb,ub)

求最大值时,c加上负号:-c

② intlinprog函数:
求解混合整数线性规划问题,

[x,y]= intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)

与linprog相比,多了参数intcon,代表了整数决策变量所在的位置

优化问题中最常见的,就是线性/整数规划问题。即使赛题中有非线性目标/约束,第一想法也应是将其转化为线性

直白点说,只要决定参加数模比赛,学会建立并求解线性/整数规划问题是非常必要的。

本期主要阐述用Matlab软件求解此类问题的一般步骤,后几期会逐步增加用Mathematica、AMPL、CPLEX、Gurobi、Python等软件求解的教程。


或许你已经听说或掌握了linprog等函数,实际上,它只是诸多求解方法中的一种,且有一定的局限性

我的每期文章力求"阅完可上手"并"知其所以然"。因此,在讲解如何应用linprog等函数语法前,有必要先了解:

  • 什么赛题适用线性/整数规划?
  • 如何把非线性形式线性化?
  • 如何查看某函数的语法?
  • 有哪几种求解方法?

把握好这四个问题,有时候比仅仅会用linprog等函数求解更重要。

一、什么赛题适用线性/整数规划

当题目中提到“怎样分配”、“XX最大/最合理”、“XX尽量多/少”等词汇时。具体有:

1. 生产安排

目标:总利润最大;约束:原材料、设备限制;

2. 销售运输

目标:运费等成本最低;约束:从某产地(产量有限制)运往某销地的运费不同;

3. 投资收益等

目标:总收益最大;约束:不同资产配置下收益率/风险不同,总资金有限;

对于整数规划,除了通常要求变量为整数外,典型的还有指派/背包等问题(决策变量有0-1变量)。

二、如何把非线性形式线性化

在比赛时,遇到非线性形式是家常便饭。此时若能够线性化该问题,绝对是你数模论文的加分项

我在之前写的线性化文章中提到:如下非线性形式,均可实现线性化

总的来说,具有 分段函数形式、 绝对值函数形式、 最小/大值函数形式、 逻辑或形式、 含有0-1变量的乘积形式、 混合整数形式以及 分式目标函数,均可实现 线性化

而实现线性化的主要手段主要就两点,一是引入0-1变量,二是引入很大的整数M。具体细节请参见之前写的线性化文章。

三、如何查看函数所有功能

授之以鱼,不如授之以渔。

学习linprog等函数最好的方法,无疑是看Matlab官方帮助文档。本文仅是抛砖引玉地举例说明几个函数的基础用法,更多细节参见帮助文档。步骤是:

  • 调用linprog等函数前需要事先安装“OptimizationToolbox”工具箱;
  • 在Matlab命令窗口输入“doc linprog”,便可查看语法,里面有丰富的例子;
  • 也可直接查看官方给的PDF帮助文档,后台回复“线性规划”可获取。

2.代码

主程序:

%%   解线性规划问题
%f(x)=-5x(1)+4x(2)+2x(3)
f=[-5,4,2]; %函数系数
A=[6,-1,1;1,2,4]; %不等式系数
b=[8;10]; %不等式右边常数项
l=[-1,0,0];  %下限
u=[3,2,inf]; %上限
%%%%用linprog求解
[xol,fol]=linprog(f,A,b,[],[],l,u)
%%%%用fmincon求解
x0=[0,0,0];
f1214=inline('-5*x(1)+4*x(2)+2*x(3)','x');
[xoc,foc]=fmincon(f1214,x0,A,b,[],[],l,u)

子程序:

function [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
%LINPROG Linear programming.
%   X = LINPROG(f,A,b) attempts to solve the linear programming problem:
%
%            min f'*x    subject to:   A*x <= b
%             x
%
%   X = LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
%   satisfying the equality constraints Aeq*x = beq. (Set A=[] and B=[] if
%   no inequalities exist.)
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This
%   option is only available with the active-set algorithm. The default
%   interior point algorithm will ignore any non-empty starting point.
%
%   X = LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the vector 'f' in PROBLEM.f, the linear inequality
%   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality
%   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in
%   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'linprog' in PROBLEM.solver. Use this syntax to solve at the
%   command line a problem exported from OPTIMTOOL.
%
%   [X,FVAL] = LINPROG(f,A,b) returns the value of the objective function
%   at X: FVAL = f'*X.
%
%   [X,FVAL,EXITFLAG] = LINPROG(f,A,b) returns an EXITFLAG that describes
%   the exit condition. Possible values of EXITFLAG and the corresponding
%   exit conditions are
%
%     3  LINPROG converged to a solution X with poor constraint feasibility.
%     1  LINPROG converged to a solution X.
%     0  Maximum number of iterations reached.
%    -2  No feasible point found.
%    -3  Problem is unbounded.
%    -4  NaN value encountered during execution of algorithm.
%    -5  Both primal and dual problems are infeasible.
%    -7  Magnitude of search direction became too small; no further
%         progress can be made. The problem is ill-posed or badly
%         conditioned.
%    -9  LINPROG lost feasibility probably due to ill-conditioned matrix.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) returns a structure OUTPUT
%   with the number of iterations taken in OUTPUT.iterations, maximum of
%   constraint violations in OUTPUT.constrviolation, the type of
%   algorithm used in OUTPUT.algorithm, the number of conjugate gradient
%   iterations in OUTPUT.cgiterations (= 0, included for backward
%   compatibility), and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LINPROG(f,A,b) returns the set of
%   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the
%   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq,
%   LAMBDA.lower for LB, and LAMBDA.upper for UB.
%
%   NOTE: the interior-point (the default) algorithm of LINPROG uses a
%         primal-dual method. Both the primal problem and the dual problem
%         must be feasible for convergence. Infeasibility messages of
%         either the primal or dual, or both, are given as appropriate. The
%         primal problem in standard form is
%              min f'*x such that A*x = b, x >= 0.
%         The dual problem is
%              max b'*y such that A'*y + s = f, s >= 0.
%
%   See also QUADPROG.

%   Copyright 1990-2018 The MathWorks, Inc.

% If just 'defaults' passed in, return the default options in X

% Default MaxIter, TolCon and TolFun is set to [] because its value depends
% on the algorithm.
defaultopt = struct( ...
    'Algorithm','dual-simplex', ...
    'Diagnostics','off', ...
    'Display','final', ...
    'LargeScale','on', ...
    'MaxIter',[], ...
    'MaxTime', Inf, ...
    'Preprocess','basic', ...
    'TolCon',[],...
    'TolFun',[]);

if nargin==1 && nargout <= 1 && strcmpi(f,'defaults')
   x = defaultopt;
   return
end

% Handle missing arguments
if nargin < 9
    options = [];
    % Check if x0 was omitted and options were passed instead
    if nargin == 8
        if isa(x0, 'struct') || isa(x0, 'optim.options.SolverOptions')
            options = x0;
            x0 = [];
        end
    else
        x0 = [];
        if nargin < 7
            ub = [];
            if nargin < 6
                lb = [];
                if nargin < 5
                    Beq = [];
                    if nargin < 4
                        Aeq = [];
                    end
                end
            end
        end
    end
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(f,'struct')
        problemInput = true;
        [f,A,B,Aeq,Beq,lb,ub,x0,options] = separateOptimStruct(f);
    else % Single input and non-structure.
        error(message('optim:linprog:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'linprog');

if nargin < 3 && ~problemInput
  error(message('optim:linprog:NotEnoughInputs'))
end

% Define algorithm strings
thisFcn  = 'linprog';
algIP    = 'interior-point-legacy';
algDSX   = 'dual-simplex';
algIP15b = 'interior-point';

% Check for non-double inputs
msg = isoptimargdbl(upper(thisFcn), {'f','A','b','Aeq','beq','LB','UB', 'X0'}, ...
                                      f,  A,  B,  Aeq,  Beq,  lb,  ub,   x0);
if ~isempty(msg)
    error('optim:linprog:NonDoubleInput',msg);
end

% After processing options for optionFeedback, etc., set options to default
% if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

if nargout > 3
   computeConstrViolation = true;
   computeFirstOrderOpt = true;
   % Lagrange multipliers are needed to compute first-order optimality
   computeLambda = true;
else
   computeConstrViolation = false;
   computeFirstOrderOpt = false;
   computeLambda = false;
end

% Algorithm check:
% If Algorithm is empty, it is set to its default value.
algIsEmpty = ~isfield(options,'Algorithm') || isempty(options.Algorithm);
if ~algIsEmpty
    Algorithm = optimget(options,'Algorithm',defaultopt,'fast',allDefaultOpts);
    OUTPUT.algorithm = Algorithm;
    % Make sure the algorithm choice is valid
    if ~any(strcmp({algIP; algDSX; algIP15b},Algorithm))
        error(message('optim:linprog:InvalidAlgorithm'));
    end
else
    Algorithm = algDSX;
    OUTPUT.algorithm = Algorithm;
end

% Option LargeScale = 'off' is ignored
largescaleOn = strcmpi(optimget(options,'LargeScale',defaultopt,'fast',allDefaultOpts),'on');
if ~largescaleOn
    [linkTag, endLinkTag] = linkToAlgDefaultChangeCsh('linprog_warn_largescale');
    warning(message('optim:linprog:AlgOptsConflict', Algorithm, linkTag, endLinkTag));
end

% Options setup
diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts),'on');
switch optimget(options,'Display',defaultopt,'fast',allDefaultOpts)
    case {'final','final-detailed'}
        verbosity = 1;
    case {'off','none'}
        verbosity = 0;
    case {'iter','iter-detailed'}
        verbosity = 2;
    case {'testing'}
        verbosity = 3;
    otherwise
        verbosity = 1;
end

% Set the constraints up: defaults and check size
[nineqcstr,nvarsineq] = size(A);
[neqcstr,nvarseq] = size(Aeq);
nvars = max([length(f),nvarsineq,nvarseq]); % In case A is empty

if nvars == 0
    % The problem is empty possibly due to some error in input.
    error(message('optim:linprog:EmptyProblem'));
end

if isempty(f), f=zeros(nvars,1); end
if isempty(A), A=zeros(0,nvars); end
if isempty(B), B=zeros(0,1); end
if isempty(Aeq), Aeq=zeros(0,nvars); end
if isempty(Beq), Beq=zeros(0,1); end

% Set to column vectors
f = f(:);
B = B(:);
Beq = Beq(:);

if ~isequal(length(B),nineqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfA'));
elseif ~isequal(length(Beq),neqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfAeq'));
elseif ~isequal(length(f),nvarsineq) && ~isempty(A)
    error(message('optim:linprog:SizeMismatchColsOfA'));
elseif ~isequal(length(f),nvarseq) && ~isempty(Aeq)
    error(message('optim:linprog:SizeMismatchColsOfAeq'));
end

[x0,lb,ub,msg] = checkbounds(x0,lb,ub,nvars);
if ~isempty(msg)
   exitflag = -2;
   x = x0; fval = []; lambda = [];
   output.iterations = 0;
   output.constrviolation = [];
   output.firstorderopt = [];
   output.algorithm = ''; % not known at this stage
   output.cgiterations = [];
   output.message = msg;
   if verbosity > 0
      disp(msg)
   end
   return
end

if diagnostics
   % Do diagnostics on information so far
   gradflag = []; hessflag = []; constflag = false; gradconstflag = false;
   non_eq=0;non_ineq=0; lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(nvars,1);
   funfcn{1} = []; confcn{1}=[];
   diagnose('linprog',OUTPUT,gradflag,hessflag,constflag,gradconstflag,...
      XOUT,non_eq,non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn);
end

% Throw warning that x0 is ignored (true for all algorithms)
if ~isempty(x0) && verbosity > 0
    fprintf(getString(message('optim:linprog:IgnoreX0',Algorithm)));
end

if strcmpi(Algorithm,algIP)
    % Set the default values of TolFun and MaxIter for this algorithm
    defaultopt.TolFun = 1e-8;
    defaultopt.MaxIter = 85;
    [x,fval,lambda,exitflag,output] = lipsol(f,A,B,Aeq,Beq,lb,ub,options,defaultopt,computeLambda);
elseif strcmpi(Algorithm,algDSX) || strcmpi(Algorithm,algIP15b)

    % Create linprog options object
    algoptions = optimoptions('linprog', 'Algorithm', Algorithm);

    % Set some algorithm specific options
    if isfield(options, 'InternalOptions')
        algoptions = setInternalOptions(algoptions, options.InternalOptions);
    end

    thisMaxIter = optimget(options,'MaxIter',defaultopt,'fast',allDefaultOpts);
    if strcmpi(Algorithm,algIP15b)
        if ischar(thisMaxIter)
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end
    if strcmpi(Algorithm,algDSX)
        algoptions.Preprocess = optimget(options,'Preprocess',defaultopt,'fast',allDefaultOpts);
        algoptions.MaxTime = optimget(options,'MaxTime',defaultopt,'fast',allDefaultOpts);
        if ischar(thisMaxIter) && ...
                ~strcmpi(thisMaxIter,'10*(numberofequalities+numberofinequalities+numberofvariables)')
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end

    % Set options common to dual-simplex and interior-point-r2015b
    algoptions.Diagnostics = optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts);
    algoptions.Display = optimget(options,'Display',defaultopt,'fast',allDefaultOpts);
    thisTolCon = optimget(options,'TolCon',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolCon)
        algoptions.TolCon = thisTolCon;
    end
    thisTolFun = optimget(options,'TolFun',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolFun)
        algoptions.TolFun = thisTolFun;
    end
    if ~isempty(thisMaxIter) && ~ischar(thisMaxIter)
        % At this point, thisMaxIter is either
        % * a double that we can set in the options object or
        % * the default string, which we do not have to set as algoptions
        % is constructed with MaxIter at its default value
        algoptions.MaxIter = thisMaxIter;
    end

    % Create a problem structure. Individually creating each field is quicker
    % than one call to struct
    problem.f = f;
    problem.Aineq = A;
    problem.bineq = B;
    problem.Aeq = Aeq;
    problem.beq = Beq;
    problem.lb = lb;
    problem.ub = ub;
    problem.options = algoptions;
    problem.solver = 'linprog';

    % Create the algorithm from the options.
    algorithm = createAlgorithm(problem.options);

    % Check that we can run the problem.
    try
        problem = checkRun(algorithm, problem, 'linprog');
    catch ME
        throw(ME);
    end

    % Run the algorithm
    [x, fval, exitflag, output, lambda] = run(algorithm, problem);

    % If exitflag is {NaN, <aString>}, this means an internal error has been
    % thrown. The internal exit code is held in exitflag{2}.
    if iscell(exitflag) && isnan(exitflag{1})
        handleInternalError(exitflag{2}, 'linprog');
    end

end

output.algorithm = Algorithm;

% Compute constraint violation when x is not empty (interior-point/simplex presolve
% can return empty x).
if computeConstrViolation && ~isempty(x)
    output.constrviolation = max([0; norm(Aeq*x-Beq, inf); (lb-x); (x-ub); (A*x-B)]);
else
    output.constrviolation = [];
end

% Compute first order optimality if needed. This information does not come
% from either qpsub, lipsol, or simplex.
if exitflag ~= -9 && computeFirstOrderOpt && ~isempty(lambda)
    output.firstorderopt = computeKKTErrorForQPLP([],f,A,B,Aeq,Beq,lb,ub,lambda,x);
else
    output.firstorderopt = [];
end

3.运行结果

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53609.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

hadoop部署配置

端口名称 Hadoop2.x Hadoop3.x NameNode内部通信端口 8020 / 9000 8020 / 9000/9820 NameNode HTTP UI 50070 9870 MapReduce查看执行任务端口 8088 8088 历史服务器通信端口 19888 19888 端口名称Hadoop2.xHadoop3.xNameNode内部通信端口8020 / 90008020 / 9000/9820NameNode…

安科瑞智慧空开微型断路器在银行的应用-安科瑞黄安南

应用场景 智能微型断路器与智能网关组合应用于末端回路 功能 1.计量功能&#xff1a;实时上报电压、电流、功率、电能、漏电、温度、频率等电参量&#xff1b; 2.报警功能&#xff1a;过压报警、欠压报警、过流报警、过载报警、漏电报警、超温报警、三相电缺相报警&#xff…

【面试】某公司记录一次面试题

文章目录 框架类1. Spring boot与 spring 架相比&#xff0c;好在哪里?2. Spring boot以及 Spring MVC 常用注解(如requestingMapping&#xff0c;responseBody 等)3. 常用的java 设计模式&#xff0c;spring 中用到哪些设计模式4. SpringIOC是什么&#xff0c;如何理解5. AOP…

ES开启身份认证

文章目录 X-Pack简介之前的安全方案ES开启认证ES服务升级https协议开启集群节点之间的证书认证 X-Pack简介 X-Pack是Elastic Stack扩展功能&#xff0c;提供安全性&#xff0c;警报&#xff0c;监视&#xff0c;报告&#xff0c;机器学习和许多其他功能。 X-Pack的发展演变&am…

jsonp 实现跨域 同时也是一个 webflux 的demo 示例

文章目录 核心原理代码html服务端 &#xff08;java 为例子&#xff09;服务端目录结构 核心原理 前端&#xff1a; 使用js 创建 script 标签&#xff0c;将请求地址&#xff0c;放到其src 中&#xff0c;并将 script 标签追加到文档流&#xff1b;后端&#xff1a;根据约定好…

Jenkins+Docker+Docker-Compose自动部署,SpringCloud架构公共包一个任务配置

前言 Jenkins和docker的安装&#xff0c;随便百度吧&#xff0c;实际场景中我们很多微服务的架构&#xff0c;都是有公共包&#xff0c;肯定是希望一个任务能够把公共包的配置加进去&#xff0c;一并构建&#xff0c;ok&#xff0c;直接上干货。 Jenkins 全局环境安装 pwd e…

使用SpringBoot+SpringMVC+Mybatis+Redis实现个人博客管理平台

文章目录 前言1. 项目概述2. 项目需求2.1功能需求2.2 其他需求2.3 系统功能模块图 3. 开发环境4. 项目结构5. 部分功能介绍5.1 数据库密码密文存储5.2 统一数据格式返回5.3 登录拦截器 6. 项目展示 前言 在几个月前实现了一个servlet版本的博客系统&#xff0c;本项目则是在原…

左神算法之中级提升班(8)

目录 【案例1】 【题目描述】 【思路解析】 【代码实现】 【案例2】 【题目描述】 【思路解析】 【代码实现】 【案例3】 【题目描述】 【思路解析】 【案例4】 【题目描述】 【思路解析】 【代码实现】 【案例5】 【题目描述】 【子序列概念】 【思路解析1 经典…

【C++】STL中list的模拟实现(增删查改,迭代器封装,运算符重载)

文章目录 前言大体框架&#xff1a; 一、节点的封装&#xff08;list_node&#xff09;二、迭代器的封装(_list_iterator)1.类模板的定义&#xff1a;2.构造函数3.前置&#xff0c;后置4.前置--&#xff0c;后置--5.解引用(operator*())6. ->重载&#xff08;operator- >…

关于提示词 Prompt

Prompt原则 原则1 提供清晰明确的指示 注意在提示词中添加正确的分割符号 prompt """ 请给出下面文本的摘要&#xff1a; <你的文本> """可以指定输出格式&#xff0c;如&#xff1a;Json、HTML提示词中可以提供少量实例&#xff0c;…

Android 面试题 ANR 五

&#x1f525; 什么是 ANR &#x1f525; ANR(Application Not Responding )应用无响应的简称&#xff0c;是为了在 APP卡死时&#xff0c;用户 可以强制退出APP的选择&#xff0c;从而避免卡机无响应问题&#xff0c;这是Android系统的一种自我保护机制。 在Android中&#xf…

【无标题】使用Debate Dynamics在知识图谱上进行推理(2020)7.31

使用Debate Dynamics在知识图谱上进行推理 摘要介绍背景与相关工作我们的方法 摘要 我们提出了一种新的基于 Debate Dynamics 的知识图谱自动推理方法。 其主要思想是将三重分类任务定义为两个强化学习主体之间的辩论游戏&#xff0c;这两个主体提取论点&#xff08;知识图中…

fixed-视频倍速

首先fn12打开开发者模式 然后进入console控制台 document.getElementsByTagName(“video”)[0].playbackRate 3 数字3 就是多少倍速 可以替换想要的倍速 直接快进到 最后 let video document.getElementsByTagName(‘video’) for (let i0; i<video.length; i) { video[…

音频编辑必备技能:怎么将音频转换mp3

丽萨&#xff1a;嘿&#xff0c;听说你最近在研究音频格式转换的方法&#xff0c;有眉目了吗&#xff1f; 凯瑞&#xff1a;没错&#xff0c;我下载了很多高清音乐&#xff0c;发现有些格式的音频文件在我的播放器上打不开&#xff0c;所以想一个转换工具。但是网上软件太多&a…

树莓派通过天线+gps获取经纬度并调用高德地图api在地图上标点

完整项目为《基于机器视觉的行人和路面缺陷检测及其边缘设备部署》 完整功能视频演示地址&#xff1a;本科最后的课设&#xff1a;“车载系统的辅助系统——基于机器视觉的行人和路面缺陷检测”完结撒花*罒▽罒*_哔哩哔哩_bilibili 该博客介绍的功能为&#xff1a; 1&#xff1…

学会这13个问题,轻松拿捏Java容器面试

java 容器都有哪些&#xff1f; 常用容器的图录&#xff1a; Collection 和 Collections 有什么区别&#xff1f; java.util.Collection 是一个集合接口&#xff08;集合类的一个顶级接口&#xff09;。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java …

【SpringBoot】| SpringBoot 和 web组件

目录 一&#xff1a;SpringBoot 和 web组件 1. SpringBoot中使用拦截器&#xff08;重点&#xff09; 2. SpringBoot中使用Servlet 3. SpringBoot中使用过滤器&#xff08;重点&#xff09; 4. 字符集过滤器的应用 一&#xff1a;SpringBoot 和 web组件 1. SpringBoot中使…

基于双层优化的微电网系统规划设计方法(Matlab代码实现)

目录 &#x1f4a5;1 概述 1.1 微电网系统结构 1.2 微电网系统双层规划设计结构 1.3 双层优化模型 1.4 上层容量优化模型 1.5 下层调度优化模型 &#x1f4da;2 运行结果 &#x1f389;3 文献来源 &#x1f308;4 Matlab代码、数据、文章讲解 &#x1f4a5;1 概述 文献来源&…

MySQL:MHA高可用集群部署及故障切换

目录 一、MHA概述 1、什么是MHA 2、MHA 的组成 3、MHA 的特点 4、MHA的工作原理 二、搭建MHA环境 主 从 manager 一、MHA概述 1、什么是MHA MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件。 MHA 的出现…

消息中间件ActiveMQ介绍

一、消息中间件的介绍 介绍 ​ 消息队列 是指利用 高效可靠 的 消息传递机制 进行与平台无关的 数据交流&#xff0c;并基于 数据通信 来进行分布式系统的集成。 特点(作用) 应用解耦 异步通信 流量削峰 (海量)日志处理 消息通讯 …... 应用场景 根据消息队列的特点&a…