C/C++多线程操作

文章目录

  • 多线程
    • C++
      • 创建线程
      • join 和detach
      • this_thread
      • 线程操作
          • lock_guard
          • unique_lock
        • 条件变量 condition_variable
          • wait
          • waitfor
    • C语言
      • 线程创建
      • 线程同步
  • 参考

多线程

传统的C++(C++11标准之前)中并没有引入线程这个概念,在C++11出来之前,如果我们想要在C++中实现多线程,需要借助操作系统平台提供的API,比如Linux的<pthread.h>,或者windows下的<windows.h> 。

C++11提供了语言层面上的多线程,包含在头文件中。它解决了跨平台的问题,提供了管理线程、保护共享数据、线程间同步操作、原子操作等类。

C++

在 C++ 中,线程操作由标准库提供支持,主要涉及以下几个头文件:

#include <thread>    // 线程相关的库
#include <mutex>     // 互斥量相关的库
#include <condition_variable>  // 条件变量相关的库

创建线程

当线程启动后,一定要在和线程相关联的thread销毁前,确定以何种方式等待线程执行结束。

  • detach方式,启动的线程自主在后台运行,当前的代码继续往下执行,不等待新线程结束。
  • join方式,等待启动的线程完成,才会继续往下执行。

可以使用joinable判断是join模式还是detach模式。

if (myThread.joinable()) foo.join();

在 C++ 中,使用 std::thread 类创建新线程。创建线程的基本形式为:

std::thread t1(func, args...);

其中 func 是线程执行的函数,args… 是函数的参数列表。

示例:

#include <iostream>
#include <thread>
using namespace std;

void threadFunc1() {
	std::cout << "Thread ID: " << std::this_thread::get_id() << std::endl;
}

void threadFunc2(int n) {
	std::cout << "Thread ID: " << std::this_thread::get_id()
		<< ", n = " << n << std::endl;
}




int main(){

	// 方式1:无参 void thread_fun()
	thread t1(threadFunc1);
	t1.join();

	//方式2:有参数 void thread_fun(int x)
	thread t2(threadFunc2, 10);
	t2.join();


	//方式3:直接创建线程,没有名字
	thread(threadFunc2, 100).join();

	return 0;
}
	

join 和detach

(1)join举例

下面的代码,join后面的代码不会被执行,除非子线程结束。

#include <iostream>
#include <thread>
using namespace std;
void thread_1()
{
  while(1)
  {
  //cout<<"子线程1111"<<endl;
  }
}
void thread_2(int x)
{
  while(1)
  {
  //cout<<"子线程2222"<<endl;
  }
}
int main()
{
    thread first ( thread_1); // 开启线程,调用:thread_1()
    thread second (thread_2,100); // 开启线程,调用:thread_2(100)

    first.join(); // pauses until first finishes 这个操作完了之后才能destroyed
    second.join(); // pauses until second finishes//join完了之后,才能往下执行。
    while(1)
    {
      std::cout << "主线程\n";
    }
    return 0;
}

(2)detach举例
下列代码中,主线程不会等待子线程结束。如果主线程运行结束,程序则结束。

#include <iostream>
#include <thread>
using namespace std;

void thread_1()
{
  while(1)
  {
      cout<<"子线程1111"<<endl;
  }
}

void thread_2(int x)
{
    while(1)
    {
        cout<<"子线程2222"<<endl;
    }
}

int main()
{
    thread first ( thread_1);  // 开启线程,调用:thread_1()
    thread second (thread_2,100); // 开启线程,调用:thread_2(100)

    first.detach();                
    second.detach();            
    for(int i = 0; i < 10; i++)
    {
        std::cout << "主线程\n";
    }
    return 0;
}

this_thread

this_thread是一个类,它有4个功能函数,具体如下:

函数使用说明
get_idstd::this_thread::get_id()获取线程id
yieldstd::this_thread::yield()放弃线程执行,回到就绪状态
sleep_forstd::this_thread::sleep_for(std::chrono::seconds(1))暂停1秒
sleep_until如下一分钟后执行吗,如下
using std::chrono::system_clock;
std::time_t tt = system_clock::to_time_t(system_clock::now());
struct std::tm * ptm = std::localtime(&tt);
cout << "Waiting for the next minute to begin...\n";
++ptm->tm_min; //加一分钟
ptm->tm_sec = 0; //秒数设置为0 暂停执行,到下一整分执行
this_thread::sleep_until(system_clock::from_time_t(mktime(ptm)));

线程操作

文主要讨论 c++11 中的两种锁:lock_guard 和 unique_lock。这两种锁都可以对std::mutex进行封装,实现RAII的效果。绝大多数情况下这两种锁是可以互相替代的,区别是unique_lock比lock_guard能提供更多的功能特性(但需要付出性能的一些代价)

lock_guard

lock_guard 通常用来管理一个 std::mutex 类型的对象,通过定义一个 lock_guard 一个对象来管理 std::mutex 的上锁和解锁。在 lock_guard 初始化的时候进行上锁,然后在 lock_guard 析构的时候进行解锁。这样避免了人为的对 std::mutex 的上锁和解锁的管理。

template<class Mutex> class lock_guard;

它的特点如下:

  • (1) 创建即加锁,作用域结束自动析构并解锁,无需手工解锁
  • (2) 不能中途解锁,必须等作用域结束才解锁
  • (3) 不能复制

注意:lock_guard 并不管理 std::mutex 对象的声明周期,也就是说在使用 lock_guard 的过程中,如果 std::mutex 的对象被释放了,那么在 lock_guard 析构的时候进行解锁就会出现空指针错误。

示例代码如下:

#include <thread>
#include <mutex>
#include <iostream>
 
int g_i = 0;
std::mutex g_i_mutex;  
 
void safe_increment()
{
    const std::lock_guard<std::mutex> lock(g_i_mutex);
    ++g_i;
 
    std::cout << std::this_thread::get_id() << ": " << g_i << '\n';
}
 
int main()
{
    std::cout << "main: " << g_i << '\n';
 
    std::thread t1(safe_increment);
    std::thread t2(safe_increment);
 
    t1.join();
    t2.join();
 
    std::cout << "main: " << g_i << '\n';
}

输出:

main: 0
140641306900224: 1
140641298507520: 2
main: 2

unique_lock

nique_lock 和 lock_guard 一样,对 std::mutex 类型的互斥量的上锁和解锁进行管理,一样也不管理 std::mutex 类型的互斥量的声明周期。但是它的使用更加的灵活。支持的构造函数如下:

在这里插入图片描述
简单地讲,unique_lock 是 lock_guard 的升级加强版,它具有 lock_guard 的所有功能,同时又具有其他很多方法,使用起来更强灵活方便,能够应对更复杂的锁定需要。需要使用锁的时候,首先考虑使用 lock_guard。它简单、明了、易读。如果用它完全 ok,就不要考虑其他了。如果现实不允许,再使用 unique_lock 。

特点如下:

  • 创建时可以不锁定(通过指定第二个参数为 std::defer_lock),而在需要时再锁定
  • 可以随时加锁解锁
  • 作用域规则同 lock_grard,析构时自动释放锁
  • 不可复制,可移动
  • 条件变量需要该类型的锁作为参数(此时必须使用 unique_lock)

示例代码:

一个线程减的数据加到另一个线程中去。

#include <mutex>
#include <thread>
#include <chrono>
 
struct Box {
    explicit Box(int num) : num_things{num} {}
 
    int num_things;
    std::mutex m;
};
 
void transfer(Box &from, Box &to, int num)
{
    std::unique_lock<std::mutex> lock1(from.m, std::defer_lock);
    std::unique_lock<std::mutex> lock2(to.m, std::defer_lock);
 
    
    std::lock(lock1, lock2);
 
    from.num_things -= num;
    to.num_things += num; 
}
 
int main()
{
    Box acc1(100);
    Box acc2(50);
 
    std::thread t1(transfer, std::ref(acc1), std::ref(acc2), 10);
    std::thread t2(transfer, std::ref(acc2), std::ref(acc1), 5);
 
    t1.join();
    t2.join();
}

条件变量 condition_variable

condition_variable头文件有两个variable类,一个是condition_variable,另一个是condition_variable_any。condition_variable必须结合unique_lock使用。condition_variable_any可以使用任何的锁。下面以condition_variable为例进行介绍。

condition_variable条件变量可以阻塞(wait、wait_for、wait_until)调用的线程直到使用(notify_one或notify_all)通知恢复为止。condition_variable是一个类,这个类既有构造函数也有析构函数,使用时需要构造对应的condition_variable对象,调用对象相应的函数来实现上面的功能。

类型说明
condition_variable构建对象
析构删除
waitWait until notified
wait_forWait for timeout or until notified
wait_untilWait until notified or time point
notify_one解锁一个线程,如果有多个,则未知哪个线程执行
notify_all解锁所有线程
cv_status这是一个类,表示variable 的状态,如下所示
enum class cv_status { no_timeout, timeout };
wait

当前线程调用 wait() 后将被阻塞(此时当前线程应该获得了锁(mutex),不妨设获得锁 lck),直到另外某个线程调用 notify_* 唤醒了当前线程。在线程被阻塞时,该函数会自动调用 lck.unlock() 释放锁,使得其他被阻塞在锁竞争上的线程得以继续执行。另外,一旦当前线程获得通知(notified,通常是另外某个线程调用 notify_* 唤醒了当前线程),wait()函数也是自动调用 lck.lock(),使得lck的状态和 wait 函数被调用时相同。代码示例:

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex mtx;  // 定义互斥量
std::condition_variable cv;  // 定义条件变量

bool ready = false;  // 条件变量状态标志

void threadFunc(int n) {
    std::unique_lock<std::mutex> lock(mtx);
    while (!ready) {   // 等待条件变量
        cv.wait(lock);
    }
    std::cout << "Thread ID: " << std::this_thread::get_id() 
              << ", n = " << n << std::endl;
}

int main() {
    std::thread t1(threadFunc, 10);
    std::thread t2(threadFunc, 20);

    // 设置条件变量状态标志
    std::this_thread::sleep_for(std::chrono::seconds(2));
    ready = true;
    cv.notify_all();  // 唤醒所有等待条件变量的线程

    t1.join();
    t2.join();
    return 0;
}

在上述代码中,std::condition_variable 类型的 cv 对象用于实现线程等待条件变量的功能。在 threadFunc 函数中,使用 cv.wait(lock) 等待条件变量。在 main 函数中,先等待一段时间后设置条件变量状态标志 ready 为 true,再通过 cv.notify_all() 唤醒所有等待条件变量的线程。

waitfor

与std::condition_variable::wait() 类似,不过 wait_for可以指定一个时间段,在当前线程收到通知或者指定的时间 rel_time 超时之前,该线程都会处于阻塞状态。而一旦超时或者收到了其他线程的通知,wait_for返回,剩下的处理步骤和 wait()类似。

template <class Rep, class Period>
  cv_status wait_for (unique_lock<mutex>& lck,
                      const chrono::duration<Rep,Period>& rel_time);

另外,wait_for 的重载版本的最后一个参数pred表示 wait_for的预测条件,只有当 pred条件为false时调用 wait()才会阻塞当前线程,并且在收到其他线程的通知后只有当 pred为 true时才会被解除阻塞。

template <class Rep, class Period, class Predicate>
    bool wait_for (unique_lock<mutex>& lck,
         const chrono::duration<Rep,Period>& rel_time, Predicate pred);

代码示例:

#include <iostream>           // std::cout
#include <thread>             // std::thread
#include <chrono>             // std::chrono::seconds
#include <mutex>              // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable, std::cv_status

std::condition_variable cv;
int value;
void read_value() 
{
    std::cin >> value;
    cv.notify_one();
}
int main ()
{
    std::cout << "Please, enter an integer (I'll be printing dots): \n";
    std::thread th (read_value);
  
    std::mutex mtx;
    std::unique_lock<std::mutex> lck(mtx);
    while (cv.wait_for(lck,std::chrono::seconds(3))==std::cv_status::timeout) 
    {
        std::cout << '.' << std::endl;
    }
    std::cout << "You entered: " << value << '\n';

    th.join();
    return 0;
}

通知或者超时都会解锁,所以主线程会一直打印。示例中只要过去3秒,就会不断的打印。

C语言

在 C语言中,可以通过 pthread 库来创建线程。pthread 库是一个 POSIX 标准的线程库,可以在 Linux、Unix 等操作系统上使用。

线程创建

线程的创建需要用到 pthread_create 函数,它的原型如下:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);

参数说明:

  • thread:指向 pthread_t 类型的指针,用于存储新创建的线程的 ID;
  • attr:指向 pthread_attr_t 类型的指针,用于设置线程的属性,一般可以设置为 NULL;
  • start_routine:指向线程的函数指针,该函数用于执行新线程的任务;
  • arg:传递给线程函数的参数。

下面是一个简单的线程创建示例代码:

#include <stdio.h>
#include <pthread.h>
void *thread_func(void *arg) {
    printf("This is a new thread!\n");
    pthread_exit(NULL);
}
int main() {
    pthread_t tid;
    pthread_create(&tid, NULL, thread_func, NULL);
    printf("This is the main thread!\n");
    pthread_exit(NULL);
}

运行结果:

This is the main thread!
This is a new thread!

可以看到,在 main 函数中调用 pthread_create 函数创建了一个新线程,然后在新线程中执行了 thread_func 函数,并打印出"This is a new thread!“。同时,主线程也继续执行,并打印出"This is the main thread!”。

需要注意的是,在使用 pthread 库时,main 函数必须调用 pthread_exit 函数来结束程序,否则可能会出现线程无法正常退出的情况。

线程同步

在多线程编程中,由于多个线程同时执行,可能会出现资源竞争的情况。为了避免这种情况,需要对线程进行同步。在 C语言中,可以使用互斥锁、条件变量等机制来实现线程同步。

  1. 互斥锁
    互斥锁是一种用于保护共享资源的锁,只有获得锁的线程才能访问共享资源。

在 C语言中,可以使用 pthread 库中的 pthread_mutex_init、pthread_mutex_lock、pthread_mutex_unlock、pthread_mutex_destroy 函数来实现互斥锁。其中,pthread_mutex_init 函数用于初始化互斥锁,pthread_mutex_lock 函数用于加锁,pthread_mutex_unlock 函数用于解锁,pthread_mutex_destroy 函数用于销毁互斥锁。

下面是一个使用互斥锁的示例代码:

#include <stdio.h>
#include <pthread.h>
int counter = 0;
pthread_mutex_t mutex;
void *thread_func(void *arg) {
    int i;
    for (i = 0; i < 1000000; i++) {
        pthread_mutex_lock(&mutex);
        counter++;
        pthread_mutex_unlock(&mutex);
    }
    pthread_exit(NULL);
}
int main() {
    pthread_t tid1, tid2;
    pthread_mutex_init(&mutex, NULL);
    pthread_create(&tid1, NULL, thread_func, NULL);
    pthread_create(&tid2, NULL, thread_func, NULL);
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_mutex_destroy(&mutex);
    printf("counter = %d\n", counter);
    pthread_exit(NULL);
}

运行结果:

counter = 2000000

可以看到,在 main 函数中创建了两个线程 tid1 和 tid2,它们的任务是分别对 counter 变量进行 1000000 次累加操作。由于 counter 变量是一个共享资源,因此需要使用互斥锁来保护它。

在线程函数中,首先调用 pthread_mutex_lock 函数获得锁,然后对 counter 变量进行操作,最后调用 pthread_mutex_unlock 函数释放锁。在 main 函数中,使用 pthread_join 函数等待线程 tid1 和 tid2 执行完毕,然后销毁互斥锁并打印出 counter 的最终值。

  1. 条件变量
    条件变量是一种用于线程间通信的机制,可以用于实现线程的等待和唤醒操作。

在 C语言中,可以使用 pthread 库中的 pthread_cond_init、pthread_cond_wait、pthread_cond_signal、pthread_cond_broadcast、pthread_cond_destroy 函数来实现条件变量。

其中,pthread_cond_init 函数用于初始化条件变量,pthread_cond_wait 函数用于等待条件变量,pthread_cond_signal 函数用于唤醒等待条件变量的线程,pthread_cond_broadcast 函数用于唤醒所有等待条件变量的线程,pthread_cond_destroy 函数用于销毁条件变量。

下面是一个使用条件变量的示例代码:

#include <stdio.h>
#include <pthread.h>
int buffer = 0;
pthread_mutex_t mutex;
pthread_cond_t cond;
void *producer(void *arg) {
    int i;
    for (i = 0; i < 10; i++) {
        pthread_mutex_lock(&mutex);
        buffer++;
        printf("Producer produced %d\n", buffer);
        pthread_cond_signal(&cond);
        pthread_mutex_unlock(&mutex);
        sleep(1);
    }
    pthread_exit(NULL);
}
void *consumer(void *arg) {
    int i;
    for (i = 0; i < 10; i++) {
        pthread_mutex_lock(&mutex);
        while (buffer == 0) {
            pthread_cond_wait(&cond, &mutex);
        }
        buffer--;
        printf("Consumer consumed %d\n", buffer);
        pthread_mutex_unlock(&mutex);
        sleep(1);
    }
    pthread_exit(NULL);
}
int main() {
    pthread_t tid1, tid2;
    pthread_mutex_init(&mutex, NULL);
    pthread_cond_init(&cond, NULL);
    pthread_create(&tid1, NULL, producer, NULL);
    pthread_create(&tid2, consumer, NULL);
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_mutex_destroy(&mutex);
    pthread_cond_destroy(&cond);
    pthread_exit(NULL);
}

运行结果:

Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0
Producer produced 1
Consumer consumed 0

可以看到,该程序中有一个生产者线程和一个消费者线程,它们共享一个缓冲区变量 buffer。生产者线程负责将 buffer 逐个增加,消费者线程负责将 buffer 逐个减少。当 buffer 为 0 时,消费者线程将进入等待状态,等待生产者线程将 buffer 增加后发出信号唤醒自己。当 buffer 不为 0 时,生产者线程将向消费者线程发送一个信号,通知其可以开始消费。通过使用条件变量和互斥锁,生产者和消费者线程可以保证对 buffer 变量的操作是互斥的。

参考

  • C++多线程详解(全网最全)
  • C++ 线程操作
  • lock_guard和unique_lock
  • C语言多线程编程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分布式ID性能评测:CosId VS 美团 Leaf

环境 MacBook Pro (M1)JDK 17JMH 1.36运行在本机 Docker 内的 mariadb:10.6.4 运行 CosId SegmentChainId 模式&#xff0c;基准测试代码&#xff1a; Benchmarkpublic long generate() {return segmentChainId.generate();}Leaf 基准测试代码&#xff1a; Benchmarkpublic l…

nsq整体架构及各个部件作用详解

文章目录 前言 nsq的整体架构图 部件&#xff1a;nsqd 部件&#xff1a;nsqlookupd 部件&#xff1a;nsq连接库 部件&#xff1a;nsqadmin 前言 上两篇博客 centos环境搭建nsq单点_YZF_Kevin的博客-CSDN博客 linux环境搭建nsq集群_YZF_Kevin的博客-CSDN博客 我们讲了nsq是…

《MySQL 实战 45 讲》课程学习笔记(一)

基础架构&#xff1a;一条 SQL 查询语句是如何执行的&#xff1f; MySQL 的基本架构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层 包括连接器、查询缓存、分析器、优化器、执行器&#xff1b;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&…

华为数通HCIP-VPN技术-mpls vpn

VPN&#xff08;虚拟专线网络&#xff09; 作用&#xff1a;实现广域互联&#xff08;不同地域局域网之间跨越公网进行互通&#xff09;&#xff1b; VPN&#xff08;Virtual Private Network&#xff0c;虚拟专用网络&#xff09;指的是在一个公共网络中实现虚拟的专用网络&…

python速成之循环分支结构学习

循环结构 应用场景 我们在写程序的时候&#xff0c;一定会遇到需要重复执行某条或某些指令的场景。例如用程序控制机器人踢足球&#xff0c;如果机器人持球而且还没有进入射门范围&#xff0c;那么我们就要一直发出让机器人向球门方向移动的指令。在这个场景中&#xff0c;让…

无涯教程-jQuery - serialize( )方法函数

serialize()方法将一组输入元素序列化为数据字符串。 serialize( ) - 语法 $.serialize( ) serialize( ) - 示例 假设无涯教程在serialize.php文件中具有以下PHP内容- <?php if( $_REQUEST["name"] ) {$name$_REQUEST[name];echo "Welcome ". $na…

【Unity2D】Order in Layer 与Layer的区别

Order in Layer 是Unity 图形渲染的顺序&#xff0c;通过设置Order in Layer &#xff0c;可以设置同层(Layer)的物体出现顺序&#xff0c;可以默认使一种物体出现在另一种物体前方 设置一物体默认在其他物体之上不被遮挡 Layer是Unity中物体的层级&#xff0c;不同物体可以位…

SOLIDWORKS Utilities应用

在实际的生产设计制造中&#xff0c;经常会遇到同一个零件多个版本&#xff0c;有可能再次调用零件的时间已经是很长时间之后&#xff0c;对于版本之间的区别就不会那么清楚&#xff0c;碰到简单明显的零件还可以轻松的找到区别&#xff0c;但是复杂的零件区别的查找可能会造成…

word显示书签并给书签添加颜色

CTRg 定位书签 在 Word 的用户界面中&#xff0c;没有直接的选项可以批量为所有书签设置颜色。但你可以使用 VBA 宏或者编写自定义的功能来实现这个需求。这里给出一个简单的 VBA 宏&#xff0c;它可以设置当前文档中所有书签内文本的颜色&#xff1a;vba Sub ColorAllBookmark…

C++程序获取python脚本控制台输出的一种方法

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> 最近要使用C程序调用python脚本&#xff0c;调用方法是通过启动python进程来调用&#xff0c;其中遇到的一个问题是在C程序中需要获取python脚本的控制台…

数组的使用(逆序、冒泡)

内存连续数据类型相同从0开始索引 找出数组中的最大值 #include <iostream> #include <stdlib.h> //随机数所在文件 using namespace std;int main() {int arr[5]{104,134,145,129,89};//初始化没有填的为0 int max0;for(int i0;i<5;i){if(arr[i]>max){ma…

Android AIDL 使用

工程目录图 请点击下面工程名称&#xff0c;跳转到代码的仓库页面&#xff0c;将工程 下载下来 Demo Code 里有详细的注释 代码&#xff1a;LearnAIDL代码&#xff1a;AIDLClient. 参考文献 安卓开发学习之AIDL的使用android进阶-AIDL的基本使用Android AIDL 使用使用 AIDL …

SpringCloudAlibaba之Ribbon

Ribbon是nacos自带的负载均衡器&#xff0c;属于客户端的负载均衡 但是在Spring高级版本中让LoadBalancer替代了 本人用的是2.1.0的nacos&#xff0c;ribbon还没有被替换。 使用&#xff1a; 在配置类中&#xff1a;LoadBalanced BeanLoadBalancedpublic RestTemplate restT…

HTTP——一、了解Web及网络基础

HTTP 一、使用HTTP协议访问Web二、HTTP的诞生1、为知识共享而规划Web2、Web成长时代3、驻足不前的HTTP 三、网络基础TCP/IP1、TCP/IP协议族2、TCP/IP的分层管理3、TCP/IP 通信传输流 四、与HTTP关系密切的协议&#xff1a;IP、TCP和DNS1、负责传输的 IP 协议2、确保可靠性的TCP…

Java期末复习基础题编程题

文章目录 基础题记录实践题记录&&与C比较题目1&#xff1a;题目2&#xff1a;题目3&#xff1a; 基础题记录 编译型语言&#xff1a; 定义&#xff1a;在程序运行之前&#xff0c;通过编译器将源程序编译成机器码(可运行的二进制代码)&#xff0c;以后执行这个程序时&…

63 # commander 的配置

初始化配置文件 新建文件夹 63&#xff0c;执行 npm init -y 修改配置文件 {"name": "kaimo-http-server","version": "1.0.0","description": "","main": "index.js","keywords"…

实用上位机--QT

实用上位机–QT 通信协议如下 上位机设计界面 #------------------------------------------------- # # Project created by QtCreator 2023-07-29T21:22:32 # #-------------------------------------------------QT += core gui serialportgreaterThan(QT_MAJOR_V…

nginx配置访问本机文件夹里的静态资源404

在nginx中配置了location访问一直404 location /web/user/ { alias /home/user/wlds/user/;index index.html;try_files $uri $uri/ /index.html 404;} 看日志发现Permission denied 因为是直接使用的yum安装的二进制包nginx&#xff0c;nginx.conf文件首行是user nginx;所以没…

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现POA-CNN-BiLSTM鹈鹕算法优化卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLA…

从Vue2到Vue3【七】——Vue2中响应式原理的实现及其缺陷

系列文章目录 内容链接从Vue2到Vue3【零】Vue3简介从Vue2到Vue3【一】Composition API&#xff08;第一章&#xff09;从Vue2到Vue3【二】Composition API&#xff08;第二章&#xff09;从Vue2到Vue3【三】Composition API&#xff08;第三章&#xff09;从Vue2到Vue3【四】C…